江苏高熵合金价格走势分析_高熵合金公司
1.如何测量高熵合金的热膨胀系数
2.测定高熵合金的耐腐蚀性用什么酸
3.高熵合金的性质
4.高温合金和高熵合金的区别
5.高熵合金混合焓怎么算
6.JACS-?香港理工黄勃龙和北大郭少军:?高熵合金亚纳米带一般合成方法
如何测量高熵合金的热膨胀系数
高熵合金是一种新型的复合材料,其热膨胀系数测量可以采用以下方法:
1、水平法:将样品固定在支架上,并置于恒温槽中。通过测量样品长度变化来计算热膨胀系数。具体操作时,可以先将恒温槽升温至一定温度,然后记录样品长度并等待一段时间后再次记录长度。通过两次长度对比来计算热膨胀系数。
2、垂直法:将样品固定在一个垂直的支架上,并置于恒温槽中。通过测量样品长度和重量的变化来计算热膨胀系数。具体操作时,可以先将恒温槽升温至一定温度,然后记录样品长度和重量,并等待一段时间后再次测量长度和重量。通过两次长度和重量对比来计算热膨胀系数。
3、光学插值法:使用光学插值仪器进行测量。该方法可以实现非接触式的测量,精度较高,适用于热膨胀系数小的材料。具体操作时,可以将样品放置在光学插值仪器中,升温至一定温度后进行测量。
测定高熵合金的耐腐蚀性用什么酸
测定高熵合金的耐腐蚀性用30%硝酸。根据查询维普资讯网站显示,采用浸蚀腐蚀方法研究了高熵合金在30%硝酸溶液中的耐蚀性能。因此测定高熵合金的耐腐蚀性用30%硝酸。金属的耐腐蚀性测试使用的测试材料和方法有很多。
高熵合金的性质
目前,根据研究高熵合金性质和特点总结所谓的高熵合金4大效应
1.热力学上的高熵效应
如图1所示,当合金由两种元素等原子比混合时其合金熔体的混合熵为0.69R,而由五种元素组成的等原子比合金熔体的混合熵已经可以达到1.61R,而一般金属合金的熔化熵为1R左右。可以看出,高熵合金的混合熵要明显高于传统金属合金。同时从图中也可以看出,当等原子比合金熔体的混合熵随合金组元数的增加而增加,但是当组元数超过13以后,其合金熔体的混合熵增长的幅度将趋于平缓。
图1.等原子比合金按正则溶体得到的混合熵和组元数N的关系(Zhang et a1.,2007), 纵坐标的单位R为摩尔气体常量,R=8.31J/(K·mol)
2.结构上的晶格畸变效应
高熵合金存在着严重的晶格畸变,严重的晶格畸变必然会影响到材料的力学,热学,电学等一系列性能。如高热阻,高电阻效应。
3.动力学上的迟滞扩散效应
相变取决于原子扩散,它需要组元之间的协同扩散才能达到不同相的平衡分离。这种必要的协同扩散,以及阻碍原子运动的晶格畸变,都会限制高熵合金中的有效扩散速率。在高熵合金的铸造过程中,冷却时的相分离在高温区间通常被抑制从而延迟到低温区间。
4.性能上的“鸡尾酒”效应
高熵合金的‘’鸡尾酒”效应是指其多种元素的本生特性和他们之间相互作用使高熵合金呈现一种复杂效应。这种“鸡尾酒”效应是一位印度科学家首先提出的。举例来说,如果使用较多轻元素,合金的总体密度将会减小;如果使用较多的抗氧化元素,如铝或硅,合金的高温抗氧化能力就会提高。
高温合金和高熵合金的区别
高温合金和高熵合金是两种不同类型的材料。高温合金主要用于高温环境下的应用,具有复杂的晶体结构;而高熵合金具有高度均匀的组成和无序的结构
1. 组成和结构:
- 高温合金:高温合金是一种将基体金属与合金元素(如镍、钴、铁等)相结合的材料。高温合金通常具有复杂的晶体结构,例如γ相、γ'相等。这些合金元素的添加可以改变晶体结构、增强材料的高温强度、提高耐热性能等。
- 高熵合金:高熵合金是一种特殊的多元合金,其具有至少五种或更多互溶的主元素。与传统合金相比,高熵合金在组成上具有高度均匀的特点,没有明显的主元素和次元素。高熵合金的结构通常是均匀无序的,类似于无序固溶体或玻璃态结构。
2. 性能:
- 高温合金:高温合金主要用于高温环境下的应用,具有优异的高温强度、抗氧化性能、抗热腐蚀性能等。这些合金通常用于航空航天、能源、化工等领域。
- 高熵合金:高熵合金在近年来引起了广泛的研究兴趣。由于其特殊的组成和结构,高熵合金表现出良好的力学性能、耐腐蚀性能、抗辐射性能等。这使得高熵合金在材料科学领域及其他领域中具有广泛的应用潜力。
高熵合金混合焓怎么算
用线性关系计算。
混合焓又称混合热,是混合函数之一,是指大块非晶合金的玻璃转变温度与合金混合焓的绝对值之间存在线性关系,计算公式是S=Rln(n)。
其中Gmix为吉布斯自由能,Hmix为混合焓,T为热力学温度,Smix为混合熵。用线性关系计算。
JACS-?香港理工黄勃龙和北大郭少军:?高熵合金亚纳米带一般合成方法
研究背景
内容简介
基于此,近日香港理工大学黄勃龙和北京大学郭少军团队设计了一种新的通用低温方法,将多达八种金属元素合并到一个单相亚纳米带中,以获得世界上最薄的HEA金属材料。实验表明,超薄HEA亚纳米带(SNR)的合成过程包括:(1)通过不同金属前体与银纳米线模板之间的电交换反应形成不同的金属原子成核,(2)不同金属前体在纳米线模板上的共还原,以及(3)去除内部银核。密度泛函理论(DFT)计算表明,HEA SNR的结晶和稳定性强烈依赖于模板中的“高动态”Ag,HEA亚纳米带的结晶水平与Pt和Pd的浓度密切相关。目前的合成方法能够灵活控制HEA SNR中的组分和浓度,以实现HEA SNR库和优异的电催化性能。设计良好的HEA SNR在催化燃料电池氧还原反应方面有很大的改进,并且具有高放电容量、低充电过电位和优异的锂电池耐久性 氧气电池。DFT计算表明,HEAs中高浓度还原性元素具有很强的还原能力,而其他元素则保证了有效的电子转移。相关论文以“A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons”发表在J. Am. Chem. Soc.
本文亮点
1. 构建2D HEA SNR的一般合成路线,包括但不限于五元(PtPdIrRuAg)、六元(PtPdIrRuAuAg)、七元(PtPdIrRuAuRhAg)和八元(PtPdIrRuAuRhOsAg)SNR。
2. 合成机理研究表明,HEA SNR是通过(1)不同金属前驱体与银之间的电偶交换反应形成不同的金属原子成核而形成的纳米线模板,(2)不同金属前体在纳米线模板上的共还原,(3)去除内部银核。
3. 密度泛函理论(DFT)计算表明,银从模板上的最大迁移是保证HEA中其他金属元素稳定的基本因素。同时,钯和铂的浓度对于确定HEA的结晶水平至关重要。在催化应用方面,代表性的五元HEA SNR是碱性电解质中ORR的高效和稳定的电催化剂。
4. DFT计算证实,高动态还原元素(Pd、Pt、Ag、Au)的浓度对于实现HEA的优异电活性至关重要,相对惰性的氧化元素(Ir、Ru、Rh、Os)提高了站点到站点的电子转移效率,但可能导致局部聚集。
图文解析
TEM,HAADF-STEM,PXRD
HEA PtPdIrRuAg SNR的宽度为50 150 nm,长度可达数微米。HEA-PtPdIrRuAg SNR 的厚度确定为约 0.8 nm。所获得的 HEA-PtPdIrRuAg SNR 的PXRD结果表明HEA-PtPdIrRuAg SNR 采用无相偏析的 fcc 合金结构。EDS元素映射揭示了Pt、Pd、Ir、Ru和 Ag 元素在五元中的均匀分布。HEA-PtPdIrRuAg SNR 上表面原子排列的原子分辨率 HAADF-STEM 图像和相应的快速傅里叶变换(FFT)模式进一步证明HEA-PtPdIrRuAg SNR 采用 (001)面向fcc 的结构。来自 HEA-PtPdIrRuAg SNR 中各个选定区域的 (200) HEA 晶格说明所获得的五元 HEA 中的晶格畸变。
HAADF-STEM,PXRD
不同成分金属在模板上的可控成核和生长是通过湿化学合成中的电流交换途径和共还原过程实现的,脱合金策略实现了新型 HEA 的二维结构演化。HEA 合成方法是通用的,可用于制造具有 fcc 晶体结构的 六元HEA-PtPdIrRuAuAg SNR、七元 HEA-PtPdIrRuAuRhAg SNR和八元 HEA-PtPdIrRuAuRhOsAg SNR。此外,严重的晶格畸变以及8组分 HEA-PtPdIrRuAuRhOsAg SNR中的无序晶格可能会在一个原子平面上导致更多的原子堆垛层错,这会在不均匀的晶面上引起明显的 X 射线布拉格散射,导致八元 HEA 信噪比的PXRD 衍射峰强度减弱和变宽。
MD模拟
为了进一步了解HEAs的形成过程,通过MD模拟进行DFT计算。为了了解HEA形成过程中原子的动力学,他们比较了元素的均方位移(MSD)。金属原子在HEA形成过程中不断移动,MSD表示金属原子随时间相对于其原始位置的位置偏差。随着更多元素被引入HEA,整体MSD也增加,表明原子迁移行为更强,熵更高,不稳定性可能增加。在HEA形成过程中,Pd和Pt是决定HEAs结晶性的主要因素。Pd和Pt对HEA-SNR的形成有重要的促进作用,而其他金属对HEA-SNR的形成没有明显的影响。
电化学性能
在O2饱和的 0.1 M KOH 中 探索 了五元 HEA-Pt23Pd20Ir17Ru16Ag24SNR 的电催化 ORR 性能,并进一步与商业 Pt/C 进行了比较。HEA-PtPdIrRuAg SNRs/C 的半波电位 (E1/2) 为 0.93 V,而 ORR 的RHE远高于商业 Pt/C(0.85 V)。在 0.90 V 时,HEA-PtPdIrRuAg SNRs/C 的质量活度为 4.28 A mgPt-1和 1.69 A mgPGMs-1(Pt 族金属,PGMs),比商业 Pt/C 高出 21.4 和 8.45 倍( 0.20 A mgPt-1)。经过 10000 次电位循环后,HEA-PtPdIrRuAg SNRs/C 的半波电位几乎没有变化,HEA-PtPdIrRuAg SNRs/C 的质量活度保持在 3. A mgPt-1和 1.43 A mgPGMs-1,在 10 000 个循环中分别比商业 Pt/C(0.14 A mgPt-1)高 26.0 倍和 10.2 倍。
电池性能测试
在0.10 A g-1时,HEA-PtPdIrRuAuAg SNRs/C 在 0.10 A g-1 的电流密度下显示出 0.87 V 的低充电过电位和 5252 mAh g-1 的高放电容量。当放电容量在 0.10 A g-1 下固定为 1000 mAh g-1 时,HEA-PtPdIrRuAuAg SNRs/C 的充电过电位低至 0.59 V。随着电流密度从 0.10 增加到 1.00 A g-1,充电过电位仍低于 1.00 V(1000 mAh g-1 时为 0.75 V)。低充电电压也可以通过 0.05 mV s-1 从 2.00 到 4.50 V 的循环伏安法 (CV) 曲线来证明,其中 HEA-PtPdIrRuAuAg SNRs/C 在 0.75 V 处可见低氧化峰。该结果表明 HEA-PtPdIrRuAuAg SNRs/C 可以作为Li2O2分解的有效催化剂。基于 HEA-PtPdIrRuAuAg SNRs/C 的 Li-O2 电池在 0.50 A g-1 下具有 100 次循环的稳定耐久性。
DFT计算
用密度泛函理论(DFT)研究了HEAs的电子结构和电活性。结果表明 Pd、Pt、Ag 和Au 是实现具有强还原能力的稳定 HEA 的关键因素。同时,Ru、Ir、Rh和Os提高了电子转移能力。这两种金属之间的优化平衡导致 ORR 和 Li-O2 电池在五元和六元 HEA 中的卓越性能。除了Ir 和 Ru,Pt 显示出很高的键合可能性。特别是,Pt 和 Os 在相邻位置上是高度优选的。通过 DFT 在五元HEA-PtPdIrRuAg 和 六元HEA-PtPdIrRuAuAg 中进一步研究了 ORR 和 Li-O2 电池的性能。在 0 V 下,ORR过程显示出持续的下坡趋势。对于 Li-O2 电池,Li 到Li2O2 的放电过程显示出自发转化。
该研究主要计算及测试方法
做同步辐射 找易科研
做球差电镜 找易科研
做计算 找易科研
易科研 | 让你科研不再难
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。