1.想提高文学水平,应看那些书?

2.关于物理的问题(高分)

3.大学生必读的书籍

4.贝塔朗菲对于系统的定义及特征

5.历届化学诺贝尔奖的得主是谁?

想提高文学水平,应看那些书?

美国预测普里戈金价-普里戈金研究所

论语 墨子/墨子 孙子兵法/孙子 孟子/孟子 老子/老子 庄子/庄子 荀子/荀子 易传·系辞 史记选/司马迁著;王伯祥选编或来新夏选编 论衡/(东汉)王充 不真空论/僧肇 物不迁论/(东晋)僧肇 神灭论/范稹 坛经/惠能 张载集/张载 四书集注/朱熹 传习录/王守仁 明夷待访录/黄宗羲 读通鉴论/王夫之 严复集/严复 仁学/谭嗣同 选集/ 诗经选/余冠英选注 楚辞选/马茂元选注 魏晋南北朝诗卷/丁夏选注 汉魏六朝诗选/余冠英选注 唐诗三百首/孙洙 宋诗选注/钱钟书选注 宋诗三百首/金性尧选 唐宋词选释/俞平伯 唐宋词选/中国社会科学院文学研究所编选、人民文学出版社出版 古文观止/吴楚材,吴调侯 三国演义/罗贯中 水浒传/施耐庵 红楼梦/曹雪芹 鲁迅选集/鲁迅 女神/郭沫若 子夜/茅盾 家/巴金 骆驼祥子/老舍 围城/钱钟书 曹禺选集/曹禺 青春之歌/杨沫 红岩/罗广斌,杨益言 艾青诗选/艾青 理想国/柏拉图 形而上学/亚里士多德 忏悔录/圣·奥古斯丁 思想录/帕斯卡 新工具/培根 论法的精神/孟德斯鸠 社会契约论/卢梭 伦理学/斯宾诺莎 西方哲学史/罗素 科学史/(英国)丹皮尔 哲学史讲演录·导言/(德国)黑格尔 西方的没落/奥斯瓦尔德·斯宾格勒 悲剧的诞生/弗里德里希·尼采 精神分析引论/西格蒙德·弗洛伊德 文化科学与自然科学/(德国)李凯尔特 人论/(德国)卡西尔 新教伦理与资本主义精神/马克斯·韦伯 中国科学思想史/(英国)李约瑟 资本主义文化矛盾/(美国)丹尼尔·贝尔 从混沌到有序/普里戈金 伊利亚特/(古希腊)荷马 奥德修记/(古希腊)荷马 神曲/(意大利)但丁 堂吉诃德/(西班牙)塞万提斯 哈姆莱特/(英国)莎士比亚 浮士德/(德国)歌德 简·爱/(英国)夏洛蒂·勃朗特 红与黑/(法国)司汤达 悲惨世界/(法国)雨果 高老头/(法国)巴尔扎克 汤姆大伯的小屋/(美国)斯托夫人 安娜·卡列尼娜/(俄国)托尔斯泰 玩偶之家/(挪威)易卜生 母亲/(俄苏)高尔基 卡夫卡短篇小说选/(奥地利)卡夫卡泰戈尔诗选 钢铁是怎样炼成的/(苏联)尼古拉·奥斯特洛夫斯基 雪国/(日本)川端康成 老人与海/(美国)海明威著;董衡巽译 百年孤独/(哥伦比亚)加西亚·马尔克斯

关于物理的问题(高分)

百年物理大事记

1900年普朗克提出物质辐射(或吸收)的能量只能是某一最小能量单位的整数倍的假说,称为量子假说,标志着量子物理学的开始。庞加莱提出不能观测到绝对运动的观点,认为物理现象的定律对于相对作匀速运动来说各观察者来说必然是一样的,称这一信念为相对性原理,赛宾提出混响时间公式,开创了建筑声学的研究,瑞利发表适用于长波范围的黑体辐射公式。维拉德发现放射性射线中还有一种不受磁场影响的射线,称为γ射线。

1902年 吉布斯的《统计力学的基本原理》出版,创立了统计系综理论。勒纳发表光电效应的经验定律,亥维赛提出电离层的假设,后为阿普顿的实验所证实。

1903年 卢瑟福、索迪提出放射往元素的嬗变理论。

1904年 洛伦兹提出高速运动的参考系之间时间、空间坐标的变换关系,称为洛伦兹变换。

1905年爱因斯坦发表《论动体的电动力学》的论文,创立了狭义相对论,揭示了时间和空间的本质联系,引起了物理学基本概念的重大变革,开创了物理学的新世纪;提出光量子论,解释了光电现象,揭示了微观客体的波粒二象性,用分子运动论解决布朗运动问题;发现质能之间的相当性(质能关系),在理论上为原子能的释放和应用开辟道路。

1906年 爱因斯坦发表了固体热容的量子理论。巴克拉通过吸收实验,发现各种元素的特征X辐射。

1906~19l2年 能斯脱得出凝聚系的熵在等温过程中的改变随热力学温度趋于零的定理,称为能斯脱定理,1912年又提出绝对零度不能达到原理,即热力学第三定律的两种表达形式。

1907年 闵可夫斯基提出狭义相对沦的四维窨表示形式,为相对论进一步发展提供了有用的数学工具。外斯提出铁磁性的分子场理论,并引人磁畴的假设。

1908年 佩兰通过布朗微粒在重力——浮力场中的分布实验,证实爱因斯坦关于布朗运动的理论预测,宣告原子论的最后胜利。

1909年 马斯登、盖革在α粒子散射实验中证实了原子内部有强电场。

1910年 密立根用油滴法对电子的电荷进行了精密的测量,称为密立根油滴实验。布里奇曼利用自己发现的无支持面密封原理,发明一种高压装置,压力可达2×109帕。

1911年开默林——昂内斯发现纯的水银样品在低温4.22——4.27K时电阻消失,接着又发现铅、锡等金属也有这样的现象,这种现象称为超导电性,这一发现,开辟了一个崭新的物理领域。卢瑟福对α粒子大角度散射实验作出解释,提出了有核的原子模型,确立了原子核的概念,赫斯等人乘气球上升到12000英尺高空进行高空测量,根据大气的电离作用随高度增大而加强的现象,发现了来自宇宙空间的辐射——字宙线。第一次索尔维物理学会议在布鲁塞尔召开。

1912年 劳厄进行晶体的X射线衍射的研究,证实X射线的波动性;把衍射后的X射线用照相干片记录,得到具有一定规则的许多黑点,称为劳厄斑或劳厄图样。德拜导出低温时固体热容的三次方律。J.J.汤姆孙通过对极隧射线的研究,发现非放射性元素的同位素。

1913年玻尔发表氢原子结构理论,用量子跃迁假说解释了氢原子光谱,弗兰克、赫兹进行电子碰撞原子实验,为玻尔的氢原子结构理论提供了实验基础。斯塔克发现处在强电场中的光源发射的光谱线发生分裂的现象,称为斯塔克效应。奠塞莱发现元素的原子光谱谱线频率与该元素的原子序数间的关系,称为莫塞莱定律。布喇格父子通过对X射线谱的研究,提出了晶体的衍射理论,建立了布喇格公式,奠定了晶体X射线结构分析的基础。

1914年 西格班在莫塞莱工作基础上,发现一系列新的X射线,并精确测定各种元素的X射线谱,查德威克指出在β衰变过程中,放出的β射线具有连续光谱。

1915年 爱因斯坦建立了广义相对论,提出广义相对论引力方程的完整形式,成功地解释了水星近日点运动,被公认为人类思想史中最伟大的成就之一。索末菲在玻尔原子中引入空间量子化,并在电子运动中考虑到相对论效应。

1916年 爱之斯坦根据量子跃迁概念推出普朗克辐射公式,并提出受激辐射理论,后发展为激光技术的理论基础。密立根用实验证实了爱因斯坦光电方程。

1917年 爱因斯坦和德西特分别发表有限无界的宇宙模型理论,开创了现代科学的宇宙学。朗之万利用压电性制成换能器产生强超声波。

1918年 玻尔提出量子理论和古典理论之间的对应原理。

1919年 爱丁顿等人在巴西和几内亚湾观测日食,证实了爱因斯坦关于引力使光线弯曲的预言。卢瑟福用α粒子轰击氮原子核,打出了质子,首次实现人工核反应。阿斯顿发明质谱仪,精确测定了同位素的质量。

1920——1922年康普顿通过实验发现X射线被晶体散射后,散射波中除原波长的波外,还出现波长增大的波,这现象后称为康普顿效应,1922年采用光子和自由电子的简单碰撞理论,对这个效应做出了正确的解释。吴有训参与了康普顿的X射线散射研究的开创工作,以精湛的实验技术和卓越的理论分析,验证了康普顿效应。

1923 年 德拜提出解释强电解质在溶液中的表现电离度的理论,称为离子互吸理论。

1924年 德布罗意提出微观粒子具有波粒二象性的假设,称为德布罗意波,又称物质波,玻色考虑到微观粒子运动状态的量子化,并考虑了微观粒子的“全同性”,发表光子所服从的统计规律,后经爱因斯坦补充,建立了玻色·爱因斯坦统计。

1925年海森伯提出微观粒子的不可观察的力学量,如位置、动量应由其所发光谱的可观察的频率、强度经过一定运算(矩阵法则)来表示,创立了矩阵力学。随即和玻恩、约旦一起用矩阵方法,发展了矩阵力学,泡利根据对光谱实验结果的分析,提出在多电子原子中,不能有两个或两个以上的电子处于相同的量子状态的原理,称为泡利不相容原理,亦称不相容原理。康普顿、西蒙、盖革。博特证实单一微观过程中能量、动量守恒。乌伦贝克和古兹密特提出电子自旋理论。

1926年薛定谔在德布罗意物质波假说的基础上,创立了波动力学,证明矩阵力学和波动力学的等价性,还发表了符合相对论要求的波动方程。玻恩提出薛定谔波函数的统计解释。费米和狄拉克各自独立地提出受泡利不相容原理约束粒子所遵从的统计规则,后称为费米——狄拉克统计。阿普顿在研究长距离无线电波的形态时,发现高出地面150英里还存在一个反射或折射层,而且比其他层的电性更强,称为阿普顿层。戈达德发射以液态氧和汽油为推进剂的火箭。瓦维洛夫在铀玻璃中观察到与布格尔定律相抵触的现象,即非线性现象。

1927年海森伯提出在确定微观粒子的每一个动力学变量所能达到的准确度方面存在着一个基本的限度,这一论断称为不确定原理,它的具体数学表达式称为不确定关系式。玻尔提出量子力学的互补原理。戴维孙、革末和G.P.汤姆孙分别用实验获得电子的衍射图样,证实德布罗意波的存在以及电子具有波动性。维格纳提出空间宇称(左右对称性)守恒的概念。

1928年狄拉克提出相对论性量子力学,把电子的相对论性运动和自旋、磁矩联系起来。喇曼、曼杰斯塔姆和兰茨贝格独立地发现了散射光中有新的不同波长成分,它和散射物质的结构密切有关,后称为喇曼效应。伽莫夫、康登等人用波动力学解释放射性衰变。海森伯用量子力学的交换能解释铁磁性。索末维提出用有量子机制的金属电子论解释比热。盖革、弥勒发明了为电离辐射计数的盖革——弥勒计数器。

1929年海森伯、泡利等人提出相对论性量子场沦。德拜提出分子偶极矩的概念。哈勃发现河外星系光谱线红移量(星系退行速度)同距离成正比。卡皮察发现各种金属的电阻随磁场强度作线性增长的定律,称为卡皮察定律,汤克斯、朗缪尔提出等离子体中电子密度的疏密波,称为朗缪尔波。

1930年 狄拉克提出正电子的空穴理论。泡利提出中微子假说,用以解释β衰变谱的连续性。

1931年 狄拉克提出磁单子理沦。威耳孙提出半导体的能带模型的量子理沦。范德格喇夫发明一种产生静电高压的装置,称为范德格喇夫起电机。

1932年查德威克详细考察用α粒子轰击硼、铍的重复实验后,发现中子。安德森在宇宙线的实验观察中,发现正电子,即首次发现物质的反粒子。在此之前赵忠尧等人于 1929~1930年间发现了与正电子有关的“特殊镭射”。尤里等人发现重氢(氘)和重水。塔姆提出在周期场中断处的表面,存在局域的表面电子态,开创了表面物理学的研究。劳伦斯和利文斯顿建成回旋加速器。考克绕夫和瓦耳顿建成高压倍加器,用以加速质子,首次实现人工核蜕变。侮森伯。尹万年科独立发表原子核由质子和中子组成的假说。奈耳建立反铁磁性的理论。诺尔和鲁斯卡发射透射电子显微镜,突破光学显微镜的分辨极限。中国物理学会宣告成立。

1933年克利顿、威廉斯利用微波技术探索氨分子的谱线,标志着微波波谱学的开端。费米建立β衰变的中微子理论。迈斯纳、奥克森菲尔德发现金属处在超导态时,其体内磁感应强度为零的现象,称为迈斯纳效应。吉奥克进行了顺磁体的绝热去磁降温实验,获得千分之几开的低温。布莱克特用创制的自动计数器控制的云室照相技术研究宇宙线,从拍摄的照片上宇宙线的径迹中发现了正负电子成对产主过程的现象。

1943年 约里奥—居里夫妇用α粒子轰击原子核,发现人工放射性核素。费米用中子照射了几乎所有的化学元素,发现慢中子能强有力地诱发核反应。切伦科夫发现高速电子在各种高折射率的透明液体和固体中发出一种淡蓝色的微弱可见光,称为切伦科夫效应。

1935年爱因斯坦同波多耳斯基和罗森合作,发表向哥本哈根学派挑战的论文,称为EPR悖论,宣称量子力学对实在的描述是不完备的,从而引发了一场围绕量子力学的两种观点的争论。汤川秀树发表了核力的介子场论,预言了介子的存在。伦敦兄弟提出超导现象的宏观电动力学理论。泽尔尼克提出位相反衬法,而由蔡司工厂制成相衬显微镜。

1936年安德森、尼德迈耶在宇宙线的研究中,发现与汤川秀树预言的质量符合但性质有差异的介子称为μ介子。玻尔提出原子核的复合核的概念,认为低能中子在进入原子核内以后将和许多核子发生相互作用而使它们被激发,结果就导致核蜕变。朗道提出二级相变理论,即内能、熵、体积等不变,但热容量、膨胀系数和压缩系数等发生突变的相变过程的理论。德斯特里奥发现某些磷光体在足够强的交变电场中发光的现象,称为电致发光,又称场致发光。

1937年卡皮察发现温度低于2.17K时流过狭缝的液态氦的流速与压差无关的现象,称为超流动性,塔姆、夫兰克提出解释切伦科夫辐射的理论,雷伯制成射电望远镜,钱学森完成火箭发动机喷管扩散角对推力影响的计算。张文裕与别人合作发现放射性铝28的形成和镁25的共振效应规律,发现放射锂8发射α粒子。

1938年哈恩、斯特拉曼用中子轰击铀而产主碱土元素,直接导致核裂变的发现。拉比等人发明利用原子束或分子束的射频共振磁谱仪,精确测定核自旋和核磁矩。F.伦敦用玻色·爱因斯坦统计法提出解释超流动性的统计理论。蒂萨提出氦Ⅱ的二流体模型,预言热波即第二声波的存在。贝特、魏茨泽克独立地推测太阳能源可能来自它的内部氢核聚变成氦核的热核反应,提出了碳循环和质子—质子链两组核反应假说,用以解释太阳和恒星的巨大能量。

1939 年奥本海默、斯奈德根据广义相对论,预言了黑洞的存在,玻尔、惠勒、弗朗克提出原子核的液滴模型,用以解释重核裂变现象,迈特纳、弗里施恨据液滴模型,解释了铀核裂变,并预言每次裂变会释放大量能量。达德发明了压缩电话频带的言语分析合成系统,即通带式声码器。

1940年西傅格、麦克米伦人工合成超铀元素镎和钚。泡利证明了自旋量子数为整数的粒子服从玻色·爱因斯坦统计规律;自旋量子数为半整数的粒子服从费米—狄拉克统计规律。阿耳瓦雷茨、布洛赫发表中子磁矩的测定结果,克斯行建成回旋加速器。钱三强发现三分裂;与何泽慧一起发现四分裂。钱伟长提出关于板壳的内秉统一理沦。

1941年 朗道提出氦Ⅱ超流性的量子理论。罗西、霍耳由介子蜕变实验证实时间的相对论效应。布里奇曼发明能产生1010帕的高压装置。

1942年 在费米、西拉德等人颂导下,美国建成第一个裂变反应堆。板田昌一提出两种介子和两种中微子的假说。指出μ子不是汤川介子。哈密顿、彭恒武用核子的介子理论来解释宇宙线中的现象。

1943年 海森伯提出粒子相互作用的散射矩阵理论。

1944年 韦克斯勒提出自动稳相原理,为高能加速器的发明开辟了道路。托沃伊斯基用含有铁系元素的顺磁盐类为样品,观察到固态物质中的顺磁共振。布劳恩研制成V—2型远程火箭。钱学森参加研制成“二等兵A”导弹,后又研制成功其他几种导弹。

1945年 在奥本海默领导下,美国爆炸了世界第一颗。

1946年 朝永振一朗提出量子电动力学的“重整化”概念。珀塞尔、布洛赫等人分别在实验上实现了固体石蜡和液体水分子中氢核的共振吸收。阿耳瓦雷茨建成质子直线加速器,为直线加速器的发展奠定了基础。

1947年鲍威尔等在宇宙线中发现π介子。罗彻斯特在宇宙线中发现奇异粒子。库什等发现电子的反常磁矩。兰姆、雷瑟福研究氢原子能级结构,发现狄拉克电子论中两个重合的能级实际上是分开的现象,称为兰姆移位。贝特用质最重整化概念修补了量子电动力学,并解释了兰姆移位。普里戈金提出不可逆过程热力学中的最小熵产生原理。卡尔曼等发明了闪烁计数器,葛庭燧在金属内耗研究中奠定了“滞弹性”领域的理论基础,国际上把他创制的、研究内耗用的扭摆称为葛氏扭摆,把他首次发现的晶粒间界内耗峰称为葛氏峰。黄昆通过研究固体中杂质缺陷,提出X射线漫散射理论,被国际上称为黄散射。

1947~1948年 巴丁提出半导体表面态理论,并和衣喇顿一起发现晶体管效应,导致发明点接触型晶体管,一个月后,肖克莱发明PR结晶体管。

1948年施温格用电子质量的重整化概念解释了电子反常磁矩。费因曼用质量和电荷的重整化概念发展了量子电动力学,奈耳提出亚铁磁性的分子场理论。伽柏提出物体三维立体像的全息照相理论。张文裕发现μ子系弱作用粒子和μ-1子原子,被国际上称为张原子和张辐射,突破卢瑟福—玻尔原子模型,开拓奇特原子研究的新领域。

1949年 迈尔、延森等提出原子核的壳层结构模型。伽莫夫提出宇宙起源的原始火球学说。

1950年 朗道、京茨堡等提出超导态宏观波函数应满足的方程组。黄昆、里斯一起提出多声子的辐射和无辐射跃迁的量子理论,被国际上称为黄—里斯理论。洪朝生发现杂质能级上的导电现象,形成了杂质导电的概念。吴仲华提出叶轮机械三元流动理沦。

1951年 德梅耳特、克吕格尔在固体中观察到35CL和37CL的核电四极矩共振信号。黄昆提出晶体中声子与电磁波的耦合振荡方程式,被国际上称为黄方程。

1952年 A.玻尔、莫待森提出原子核结构的集体模型。格拉泽发明探测高能粒子径迹的气泡室。美国爆炸了世界上第一颗氢弹。

1954年 盖尔—曼引入核子、介子和超子的奇异数,并发现奇异性在强相互作用中是守恒的。汤斯等(包括中国学者王天眷)获得了氨分微波激射放大和振荡,巴索夫和普罗霍罗夫也几乎在同时独立研制了同样的微波激器,成为量子电子学的先驱。

1955年 坂田昌一在物质结构具有无限层次的观念的基础上,提出强相互作用粒子的复合模型。张伯伦、西格雷先后发现反质子、反中子。

1956年 李政道、杨振宁提出弱相互作用中字称不守恒,开尔斯特、奥年耳提出建造粒子对撞机的原理。

1957年吴健雄等用衰变实验证明了弱相互作用中字称不守恒,在整个物理学界产主极为深远的影响。巴丁、施里弗和库珀发表超导的BCS理论,成为第一个成功解释超导现象的微观理论。穆斯堡尔发现无反冲γ射线共振吸收现象,称为穆斯堡尔效应,后发展为穆斯堡尔谱学。劳孙提出受控热核反应实验能量增益的条件,称为劳孙判据。苏联发射了世界上第一颗人造地球卫星。

1958年 肖洛、汤斯提出利用受激发射产生特强光束和单色光放大器的设计原理,促进了激光技术的发展。

1959年 王淦昌、王祝翔、丁大钊等发现反西格马负超子。江崎玲於奈发现超导体的单电子隧道效应。范艾伦预言地球上上存在强辐射带,后称为范艾伦带。

1960年 梅曼制成红宝石激光器,他把自己成功的原因归结为坚持以红宝 石为工作物质,而其他研制组由于担心红宝石不能产生激光于中途放弃使用这种物质。4个月后,贾万等制成氦氨激光器。

1961年 盖耳—曼和奈曼分别提出用SU(3)对称性对强子进行分类的八重态方案,美国开始“阿波罗”号宇宙飞船登月计划。

1962年 约瑟夫森预言了超导体的一种量子效应,后称为约瑟夫森效应,为发展超导电子学奠定了基础。美国的布鲁黑文国家实验器发现有两种中微子——电子中微子和μ子中微子。

1964年 盖耳—曼和兹韦克提出强子结构的夸克模型。萨穆斯在气泡室中发现Ω-粒子,支持了SU(3)对称理论。中国成功地爆炸了第一颗。

1965年 中国的北京基本粒子理论组提出强子结构的层子模型。

1967年 中国成功地爆炸了第一颗氢弹。

1967—1968年 温伯格,萨拉姆分别提出电磁相互作用、弱相互作用的电弱统一理沦的标准模型。

1969年 美国发尉“阿波罗11号”飞船进行人类首次登月成功,普里戈金首次明确提出耗散结构理论。

1970年 江崎玲於奈提出超点降的概念。中国成功地发射第一颗人造地球卫星。

1972年 盖尔—曼提出了夸克的“色”量子数概念。

1973年 哈塞尔特等和本韦努等分别发现弱中性流,支持了电弱统一理论。

1974年 丁肇中、里希特分别发现一种长寿命,大质量的粒子。

1975年 佩尔等发现τ子、使轻子增加为第三代。

1976年 美国的着陆舱在火星两地着陆,成功地发回几万张火星表面照片。

1977年 莱德曼等发现Γ粒子。

1979年 丁肇中等在汉堡佩特拉正负电子对撞机上发现了三喷注现象,为胶子的存在提供了实验依据。

1980年 克利青发现量子霍耳效应。中国成功地向太平洋预定海域发射了第一枚运载火箭。

1983年 鲁比亚等发现电弱统一理论预言的传递弱相互作用的中间玻色子W+,W-和ZO。

1984年美国普林斯顿大学、劳伦斯利弗莫尔实验室用功率约1万亿瓦的高功率激光“轰击”碳和硒、钆靶,获得比常规X射线强100倍的X射线激光,从而使激光器的研制工作又向前推进一步。美国商用机器公司研制出一种称之为“光压缩机”的装置,产生了世界上最短的光脉冲,只有12×10^-15次秒。

1985年 中国科学院用原子法激光分离铀同位素原理性实验获得成功。

1986年 欧洲六国共同兴建的”超级凤凰”增殖反应堆核电站在法国克里麻佛尔正式投产并网发电。

1986~1987年 柏诺兹、谬勒发现了新的金属氧化物陶瓷材料超导体,其临界转变温度为35K,在此基础上,朱经武等人获得转变温度为98K的超导材料,赵忠贤等人获得液氮温区超导体,起始转变温度在100K以上,并首次公布材料成分为钇钡铜氧。

1988年 美国斯图尔特天文台发现了170亿光年远的星系,比已知的红移值达4.43的类星体还要遥远,该发现使人类所认识的宇宙首次形成星体的时间又推前数10亿年。中国北京正负电子对撞机首次对撞成功。

1989年美国斯坦福直线电子加速器与欧洲大型正负电子对撞机的实验组根据实验测得的ZO粒子产出率与碰撞能量的关系得出推论:构成物质的亚原子粒子只有3类。西欧、北欧14国研究人员把氘加热到1.5亿摄氏度,并把如此高温的等离子体约束住,创造了热核聚变研究的新记录。日本研制出全部采用约瑟夫森超导器件的世界上第一台约瑟夫森电子计算机,运算速度每秒达10亿次,功耗6.2毫瓦。仅为常规电子计算机功耗的千分之一。美国3架航天飞机4次发射成功,其中“亚特兰蒂斯”号航天飞机将“伽利略”号飞船送入太空,此飞船将在6年后飞抵木星进行探测。

1990年黄庭珏等研制成世界上第一台光信息数字处理机,该机的光子元件是一组光转换器,交换速度每秒1亿次,用砷化镓制成。中国清华大学核能技术研究所建成的世界上第一座压力壳式低温核供热堆投入运行。中国自行研制的“长征三号”运载火箭,准确地将“亚洲1号”卫星送人转移轨道,首次成功地用中国的运载火箭为国外发射商卫星。

另外你在拜读搜索"物理物理史"后找到更多答案。

大学生必读的书籍

《倾城之恋》

《昆虫记》

《本草纲目》

《小王子》

《呐喊》

《飘》

《胡雪岩全传》

《国富论》

《老人与海》

《百年孤独》

《悲惨世界》

《红与黑》

《汤姆叔叔的小屋》

《传》

《曾国藩家书》

《战争论》

《孙子兵法》

《史记》

《君王论》

《全球通史》

《物种起源》

《圣经》

《我与地坛》

《我的精神家园》

《活着》

《麦田里的守望者》

《美的历程》

《日瓦戈医生》

《冰心散文选》

《穆斯林的葬礼》

《瓦尔登湖》

《苏菲的世界》

《西厢记》

《情人》

《围城》

《生命中不能承受之轻》

《四世同堂》

《罪与罚》

《复活》

《喧哗与骚动》

《边城》

《雪国》

《梦的解析》

《神曲》

《茶花女》

《雷雨》

《哈姆莱特》

《欧也妮·葛朗台》

《吉檀迦利》

《变形记》

贝塔朗菲对于系统的定义及特征

一般系统论的历史背景

系统的存在是客观事实,但人类对系统的认识却经历了漫长的岁月,对简单系统研究得较多,而对复杂系统则研究得较少。

直到20世纪30年代前后才逐渐形成一般系统论。一般系统论来源于生物学中的机体论,是在研究复杂的生命系统中诞生的。

1925年英国数理逻辑学家和哲学家阿弗烈·诺夫·怀海德在《科学与近代世界》一文中提出用机体论代替机械决定论,认为只有把生命体看成是一个有机整体,才能解释复杂的生命现象。系统思维最早出现在1921年建立的格式塔心理学,还在工业心理学研究中1958年Parry J.B.提出了系统心理学(system psychology)的词汇与概念。

1925年美国学者A.J.洛特卡发表的《物理生物学原理》和1927年德国学者W.克勒发表的《论调节问题》中先后提出了一般系统论的思想。

1924~1928年奥地利理论生物学家L.von贝塔朗菲多次发表文章表达一般系统论的思想,提出生物学中有机体的概念,强调必须把有机体当作一个整体或系统来研究,才能发现不同层次上的组织原理。他在1932年发表的《理论生物学》和1934年发表的《现代发展理论》中提出用数学模型来研究生物学的方法和机体系统论的概念,把协调、有序、目的性等概念用于研究有机体,形成研究生命体的三个基本观点,即系统观点、动态观点和层次观点。

1937年贝塔朗菲在芝加哥大学的一次哲学讨论会上第一次提出一般系统论的概念。但由于当时生物学界的压力,没有正式发表。1945年他发表《关于一般系统论》的文章,但不久毁于战火,没有引起人们的注意。1947~1948年贝塔朗菲在美国讲学和参加专题讨论会时进一步阐明了一般系统论的思想,指出不论系统的具体种类、组成部分的性质和它们之间的关系如何,存在着适用于综合系统或子系统的一般模式、原则和规律,并于1954年发起成立一般系统论学会(后改名为一般系统论研究会),促进一般系统论的发展,出版《行为科学》杂志和《一般系统年鉴》。虽然一般系统论几乎是与控制论、信息论同时出现的,但直到60~70年代才受到人们的重视。

1968年贝塔朗菲的专著《一般系统论──基础、发展和应用》,总结了一般系统论的概念、方法和应用。1972年他发表《一般系统论的历史和现状》,试图重新定义一般系统论。贝塔朗菲认为,把一般系统论局限于技术方面当作一种数学理论来看是不适宜的,因为有许多系统问题不能用现代数学概念表达。

一般系统论这一术语有更广泛的内容,包括极广泛的研究领域,其中有三个主要的方面。①关于系统的科学:又称数学系统论。这是用精确的数学语言来描述系统,研究适用于一切系统的根本学说。②系统技术:又称系统工程。这是用系统思想和系统方法来研究工程系统、生命系统、经济系统和社会系统等复杂系统。③系统哲学:它研究一般系统论的科学方法论的性质,并把它上升到哲学方法论的地位。贝塔朗菲企图把一般系统论扩展到系统科学的范畴,几乎把系统科学的三个层次都包括进去了。但是现代一般系统论的主要研究内容尚局限于系统思想、系统同构、开放系统和系统哲学等方面。而系统工程专门研究复杂系统的组织管理的技术,成为一门独立的学科,并不包括在一般系统论的研究范围内。

[编辑]一般系统论的要点[1]

贝塔朗菲一般系统论的要点如下:

(1)系统的整体性

系统是若干事物的集合,系统反映了客观事物的整体性,但又不简单地等同于整体。因为系统除了反映客观事物的整体之外,它还反映整体与部分、整体与层次、整体与结构、整体与环境的关系。这就是说,系统是从整体与其要素、层次、结构、环境的关系上来揭示其整体性特征的。要素的无组织的综合也可以成为整体,但是无组织状态不能成为系统,系统所具有的整体性是在一定组织结构基础上的整体性,要素以一定方式相互联系、相互作用而形成一定的结构,才具备系统的整体性。整体性概念是一般系统论的核心。

(2)系统的有机关联性

系统的性质不是要素性质的总和,系统的性质为要素所无;系统所遵循的规律既不同于要素所遵循的规律,也不是要素所遵循的规律的总和。不过系统与它的要素又是统一的,系统的性质以要素的性质为基础,系统的规律也必定要通过要素之间的关系(系统的结构)体现出来。存在于整体中的要素,都必定具有构成整体的相互关联的内在根据,所以要素只有在整体中才能体现其要素的意义,一旦失去构成整体的根据它就不成其为这个系统的要素。归结为一句话就是:系统是要素的有机的集合。

(3)系统的动态性

系统的有机关联不是静态的而是动态的。系统的动态性包含两方面的意思,其一是系统内部的结构状况是随时间而变化的;其二是系统必定与外部环境存在着物质、能量和信息的交换。比如生物体保持体内平衡的重要基础就是新陈代谢,如果新陈代谢停止就意味着生物体的亡,这个作为生物体的系统就不复存在。贝塔朗菲认为,实际存在的系统都是开放系统,动态是开放系统的必然表现。

(4)系统的有序性

系统的结构、层次及其动态的方向性都表明系统具有有序性的特征。系统的存在必然表现为某种有序状态,系统越是趋向有序,它的组织程度越高,稳定性也越好。系统从有序走向无序,它的稳定性便随之降低。完全无序的状态就是系统的解体。

(5)系统的目的性

为了避免误解(主要是避免与古人的“目的论”混同),也有人把它称为“预决性”。贝塔朗菲认为,系统的有序性是有一定方向的,即一个系统的发展方向不仅取决于偶然的实际状态,还取决于它自身所具有的、必然的方向性,这就是系统的目的性。他强调系统的这种性质的普遍性,认为无论在机械系统或其他任何类型系统中它都普遍存在。

[编辑]一般系统理论的趋势及特点

系统理论目前已经显现出几个值得注意的趋势和特点。

第一,系统论与控制论、信息论,运筹学、系统工程、电子计算机和现代通讯技术等新兴学科相互渗透、紧密结合的趋势;

第二,系统论、控制论、信息论,正朝着"三归一"的方向发展,现已明确系统论是其它两论的基础;

第三,耗散结构论、协同学、突变论、模糊系统理论等等新的科学理论,从各方面丰富发展了系统论的内容,有必要概括出一门系统学——作为系统科学的基础科学理论;

第四,系统科学的哲学和方法论问题日益引起人们的重视。在系统科学的这些发展形势下,国内外许多学者致力于综合各种系统理论的研究,探索建立统一的系统科学体系的途径。一般系统论创始人贝塔朗菲,就把他的系统论两部分。他的狭义系统论与广义系统论两部分。他的狭义系统论着重对系统本身进行分析研究;而他的广义系统论则是对一类相关的系统科学来理行分析研究。

其中包括三个方面的内容:1.系统的科学、数学系统论;2.系统技术,涉及到控制论、信息论、运筹学和系统工程等领域;3.系统哲学,包括系统的本体论、认识论、价值论等方面的内容。

有人提出试用信息、能量、物质和时间作为体基本概念建立新的统一理论。瑞典勘探德哥尔摩大学萨缪尔教授1976年一般系统论年会上发表了将系统论。控制论、信息论综合成一门新学科的设想。在这种情况下,美国的《系统工程》杂志也改称为《系统科学》杂志。我国有的学者认为系统科学应包括"系统概念、一般系统理论、系统理论分论、系统方法论(系统工程和系统分析包括在内)和系统方法的应用"等五个部分。我国著名科学家钱学森教授。多年致力于系统工程的研究,十分重视建立统一的系统科学体系的问题自1979年以来,多次发表文章表达他形成是与自然科学、社会科学等相并列的一大门类科学,系统科学象自然科学一样也区分为系统的工程技术(包括系统工程、自动化技术和通讯技术);系统的技术科学(包括支筹学、控制论、巨系统理论、信息论);系统的基础科学,(即系统学);系统观(即系统的哲学和方法论部分,是系统科学与的哲学连接的桥梁四个层次)。这些研究表明,不久的将来系统论将以崭新的整面貌矗立于科学之林。

[编辑]一般系统论的发展趋势

贝塔朗菲创立的一般系统论,从理论生物学的角度总结了人类的系统思想,运用类比和同构的方法,建立开放系统的一般系统理论。他创立的一般系统论属于类比型一般系统论,对系统的有序性和目的性并没有作出满意的解答。

苏联学者A.И.乌耶莫夫提出参量型一般系统论。他认为贝塔朗菲的一般系统论是用同构和同态等类比形式创立的,在实际运用中受到一定的限制。人们已经发现50多种独立的类比形式,其中许多可以用于发展类比型一般系统论,因此这种理论还可以得到发展。但对不同的系统进行类比,不是建立一般系统论的唯一途径。参量型一般系统论是用系统参量来表达系统的原始信息,再用电子计算机建立系统参量之间的联系,从而确定系统的一般规律。

一般系统论发展中出现的另一个重要领域是数学系统论或一般系统的数学理论。其代表人物有M.D.梅萨罗维茨、A.W.怀莫尔和G.J.克利尔。

我国学者林福永教授1988年提出和发表了一种新的一般系统论,称为一般系统结构理论。一般系统结构理论从数学上提出了一个新的一般系统概念体系,特别是揭示系统组成部分之间的关联的新概念,如关系、关系环、系统结构等;在此基础上,抓住了系统环境、系统结构和系统行为以及它们之间的关系及规律这些一切系统都具有的共性问题,从数学上证明了,系统环境、系统结构和系统行为之间存在固有的关系及规律,在给定的系统环境中,系统行为由系统基层次上的系统结构决定和支配。这一结论为系统研究提供了精确的理论基础。在这一结论的基础上,一般系统结构理论从理论上揭示了一系列的一般系统原理与规律,解决了一系列的一般系统问题,如系统基层次的存在性及特性问题,是否存在从简单到复杂的自然法则的问题,以及什么是复杂性根源的问题等,从而把一般系统论发展到了具有精确的理论内容并且能够有效解决实际系统问题的高度。

一些物理学家、生物学家和化学家还在各自的领域中沿着贝塔朗菲开创的开放系统理论深入研究一般系统论,并得到了关于复杂系统的一系列重要规律。其中最著名的有:I.普里戈金的耗散结构理论,M.艾根的超循环理论和H.哈肯的协同学,拉兹洛的广义进化论等,以及中国学者曾邦哲的结构论-泛进化论、邓聚龙的灰色系统论、吴学谋的泛系论、张颖清的全息生物学等系统理论。

[编辑]一般系统论与复杂适应系统理论的区别[2]

贝塔朗菲的一般系统论是在20世纪40年代提出来的。这一理论建立的背景是经典科学的两个分支的基本观念在科学思想的领域内占据统治地位。一个是牛顿力学,它的机械决定论的世界观和线性的思维方式使它倡导对事物作分解的还原式的研究。另一个是热力学,当然还是平衡态的或衡态的热力学,因为它注目于热力学第二定律引起的世界的无序化、离散化的趋向,导致局限于对事物的大数的统计的认识。因此贝塔朗菲在其代表作《一般系统论》中说:当时确立了“严格机械决定论的自然观”,“它指出,宇宙是建立在随机地、无秩序地运动着的无个性粒子活动的基础上的。这些粒子由于数量极大,才产生了统计性的秩序和规则”。这“迫使我们几乎把所研究的每样东西都当作由分离的、零散的部分或因素所组成”。贝塔朗菲是个理论生物学出身的学者,他说他痛感到“当时流行的机械论方法所忽视的并起劲地加以否定的,正是生命现象中最基本的那些东西”。而生命的基本特征是组织,这表明它的各个部分相互作用,构成一个密不可分的整体,即生命有机体。“机械论世界观把物质粒子活动当作最高实在”,所以有机体的概念完全处于它的视域之外。贝塔朗菲断言:“经典物理学在无组织的复杂事物的理论发展上是非常成功的。……这种无组织的复杂事物的理论最终归结为随机和概率定律以及热力学第二定律。相反,今天的基本问题是有组织的复杂事物”。在新生的生命科学、行为科学和社会科学的发展中到处都冒出了有机体和组织性的问题,“因此现代科学提出的一个基本问题是关于组织的一般理论”。贝塔朗菲认为一般系统论的建立能够满足这种需要。

但是系统论据以提出的思想背景(或语境)也制约了它的基本观念:用机体论的模式来代替机械论,将生物系统中组成部分之间动态相互作用的规律性概括为一般系统的规律性。贝塔朗菲说:“我曾提出一种生物学的机体论概念,它强调把有机体作为一个整体或系统来考虑 ”,他所做的“不妨简称为机体论革命,它的核心是系统的观念”。总之,贝塔朗菲把整体性作为系统的核心性质,而他把生物体的机体性视为这种整体性的典范。他对生物整体性作了如下的论述。物理的组织是由先已存在的分离的要素如原子、分子等发生的联合,而生物的整体则是由原来未分的原始整体分化为在结构和功能上彼此分异的各个专门化部分然后再产生它们的协作。他说:“只有从还未分化的整体状态转化到各组成部分的分化状态上才可能有进步,但这就意味着各组成部分被固定在某种机能上。因此,渐进分异也就是渐进机构化。”“机构化”使生物系统的组成部分发生了分离化的趋向。“然而,在生物学领域中,机构化决不是完全的。虽然有机体部分地机构化了,但仍保持为一个统一系统。”这是因为“中心化原理在生物学领域中有特殊重要的意义。渐进分异往往与渐进中心化相联系”。这两种看来相互矛盾的现象的联系是怎样实现的呢?这是因为在渐进机构化的过程中,所形成的各部分之间 “存在着等级秩序”,“某些部分获得支配作用而决定整体的行为”,这样“统治部分和下面的从属部分发生了”,如生物体“受神经系统最高中心支配和统辖”。这种中心化保证了系统的整体性不变。“同时,渐进中心化原理就是渐进个体化的原理。‘个体’可以定义为中心化的系统。严格地说,在生物学领域这是一种极限情况,只是在个体发育上和种系发育上近似地接近这种状况,生长发育中的生物体通过渐进中心化愈来愈统一、‘愈不可分’”。由于中心化可以提高系统的整体性,所在贝塔朗菲的心目中中心化愈强的系统就是愈高级的系统,在生物界中也是中心化愈高的物种是进化程度愈高的物种,如他所说:“沿着进化的阶梯上升,中心化不断增强”。看来“个体”构成了贝塔朗菲系统观的最高境界,它实质上就是实现了集中统一控制的系统。根据这个观点,贝塔朗菲说:“……一群乌合之众是没有‘个体性’的,为了使一个社会结构同另一个区别开来,必须围绕某一个体结合起来。根据这个重要理由,一个象湖泊或森林那样的生物群落就不是‘有机体’。因为个体有机体往往要在不同程度上形成中心。”在这一点上我们将在下面看到圣菲研究所与贝塔朗菲背道而驰,它研究的正好是多个体或说多主体的、无中心的系统,如生态系统(包含被贝塔朗菲视为非系统的生物群落)。

另一方面我们看到贝塔朗菲由于用系统论的机体来对抗机械论的粒子,过分强调了整体性、有序性和统一性的观念,而完全否定了局部性、无序性和分散性的观念。而由于他实质上把整体性、组织性的概念等同于“有序性”的概念,以致使系统论与机械论的对立几乎变成了有序性观念与无序性观念的对立,如他说:“物理学上的规律是‘无序的规律’”;“在19世纪和20世纪上半叶,世界被设想为无序的”,“现在我们正在寻求关于世界的另一个基本观点——世界是组织”。无序性确实起消极的破坏的作用,但它也具有积极的促进重建的作用。以后埃德加·莫兰正确地指出组织性作为重组、发展的有序性实际上是有序性和无序性的统一。他特别强调“从噪声产生有序”的原理。实际上普里高津在他1969年发表的“耗散结构”理论中已包含无序性(随机性)的积极作用的观念,但贝塔朗菲在他的《一般系统论》的修订版中吸取了普里高津的“开放系统”思想而未接受这一观念。这里的关键问题在于要深刻地运用辩证法观点(即莫兰所说的“两重性逻辑”的原则)来把握有序性和无序性各自具有的两面效用。生物不能产生于绝对有序的环境里,所以我说过生物既因热力学第二定律而,也因热力学第二定律而生。当然,从总的认识发展的历史过程来看,贝塔朗菲这种认识局限性也是可以理解的。在经典力学和经典热力学统治科学思想领域的时期,宜于先用组织的有序性的观念来反对机械的无序性的观念;但在科学思想进一步发展的过程中,认识应当从有序性和无序性根本对立的方面过渡到它们对立统一的方面。这符合认识的辩证法的正、反、合的发展过程。

圣菲研究所研究的系统与贝塔朗菲研究的系统大异其趣,这一点从霍兰在他的著作《隐秩序》一开篇所提示的现象中就可以看出,“……形形色色的纽约人每天消耗着大量的各种食品,全然不必担心供应可能会断档。并非只有纽约人这样生活着,巴黎、德里、上海、东京的居民也都是如此。真是不可思议,他们都认为这是理所当然的。但是,这些城市既没有一个什么中央计划委员会之类的机构,来安排和解决购买和配售的问题,也没有保持大量的储备来发挥缓冲作用,以便对付市场波动。如果日常货物的运输被切断的话,这些城市的食品维持不了一两个星期。日复一日,年复一年,这些城市是如何在短缺和过剩之间,巧妙地避免了具有破坏性的波动的呢?……我们再一次提出前面的问题:是什么使得城市能够在灾害不断而且缺乏中央规划的情况下保持协调运行。”作为圣菲研究所主要研究对象的复杂适应系统是非个体性系统,如社会系统、经济系统、生态系统、神经系统等。而且霍兰说他们的系统模型“描述单个自由主体怎样演化成多主体,又怎样从单个种子多主体变成有若干个多主体构成的特定的聚集体”。他说“由聚集形成的主体是一个关键特征,……纽约市这个复杂适应系统,可以用这些主体不断进行的相互作用很好地加以描述。……尽管纽约呈现出多样性、不断变化、缺乏中央指挥,但无论是从短期看还是从长期看,它都保持了协调性,这是CAS(即复杂适应系统——引者)之谜的典型特征”。多个体的系统被圣菲研究所称为多主体的系统,因为其中的个体都是独立决策的行为主体,不受一个系统中枢的指挥。这个系统因此可以被称为是多中心的,甚至由于自为中心的主体是如此之多以致可以被称为“无中心”的。但是它们并不因此是“一群乌合之众”,众多独立个体在相互作用的交往活动中却能彼此协调,保持一种宏观秩序,如在市场经济中众多商品生产者自发遵循价值法则活动所造成的现象。对复杂适应系统的研究就是要发现在群体活动中隐藏的秩序或说产生宏观秩序的隐藏的机制。在单独个体的行为活动中行为秩序是由指挥中枢发布的命令决定的,因而它是被意识到的、明显的。而在无中心的多主体大系统的运行中,秩序在多主体相互作用的关系中无意识地自发地实现,因而被称为“隐藏”的。

圣菲研究所的复杂适应系统理论是在20世纪90年代提出来的。这时的学术思想背景与20世纪中叶相比已经有很大的不同。普里高津的“耗散结构”理论已被提出,说明了耗散系统进化的随机性(不可预测,涨落导致有序)。混沌理论也已被提出,指出在具有非线性作用机制的决定论系统中也会产生内在的随机性、即无序性。在贝塔朗菲的时代,热力学第二定律导致的无序性只会引起人们的恶感,而现在人们看到无序性与有序性必然相关,它还在事物的进化过程中发挥必要的作用。这时圣菲研究所立意研究庞大的复杂的能动系统在适应环境的过程中利用各种可能性发生进化的自组织的机制,它认识到正是无序性的存在才造成世界的复杂性。

根据圣菲研究所的学术***、诺贝尔物理学奖获得者盖尔曼的看法,世界的有序性首先来自基本的物理定律,其次还来自在宇宙的发展进程中所发生的被固定化的偶然事件所造成的规律(如在物理定律作用基础上附加特殊条件所形成的化学、生物学等的规律)。而世界的无序性则来源于基本定律所具有的“量子力学‘不确定性’”和我们上面讲到的混沌现象。他说:“宇宙具有量子力学性质,这就是说,即使知道初始状态和物质的基本规律,我们也只能计算出一组宇宙各种可能历史存在的概率。……且量子力学不确定性被相应地忽略不计,也仍然存在着普遍的混沌现象,这里力学过程的结果受初始条件如此大的影响,以至于初始状态的微小变化会导致最后结果显著的不同。”圣菲研究所提出了著名的“混沌的边缘”的概念,混沌的边缘“结合混沌和秩序”,是“介于有序之力与无序之力之间的某种平衡”。盖尔曼指出:“位于有序与无序之间的条件不仅是产生生命的环境的特点,也是具有高度有效性与极大深度的生命自身的特点。”这表明复杂适应系统不仅产生于“混沌的边缘 ”,而且只有在“混沌的边缘”才能有效地运作。“外界环境必须显示出足够的规律性,以供系统用于学习或适应,但同时又不能有太多的规律性,以致什么事情都不发生(即一切按规律进行,系统没有发挥其能动性的余地,导致进化、创新不能发生——引者)。”“复杂适应系统在有序与无序之间的一个中间状态运作得最好。它们探寻由半经典领域中近似决定论所决定的规律性,同时从不确定性(……)中获益,这种不确定性在寻找‘更好’图式的过程中能够提供很大的帮助。适应性的概念能将‘更好’一词具体化……”。总之,环境中有序性和无序性的结合使事物发展具有多种可能性,主体本身组织中有序性和无序性的结合使得主体的行为结构可以适应环境灵活变化,这两种条件的联合保证了适应系统可以在多种可能的行为方式中选择“较好的”行为方式来实现自己的目的,从而不断进步。这种情况体现了圣菲研究所复杂性理论的基本命题:“适应性造就复杂性”。复杂适应系统在适应生存环境的过程中在结构和功能上变得日益复杂,如盖尔曼所说:“复杂适应系统在形成之后……它们倾向于探测出大量的可能性,开辟出高层次的复杂性与新型的复杂适应系统。”普里高津提出的“ 复杂性科学”实即他提出的用以代替作为“存在的物理学”的经典科学的“演化的物理学”。但普里高津的演化的物理学只是用耗散结构理论揭示了物理——化学系统的进化机制,而圣菲研究所则欲图用他们的“复杂适应系统理论”来揭示生物层次以上的高级系统的进化机制。

现在我们看到虽然贝塔朗菲的理论和圣菲研究所的理论都指向对系统的研究,但它们的原理迥异。贝塔朗菲的系统论研究的是一中心的个体,而圣菲研究所研究的是无中心的群体。贝塔朗菲的系统实行自上而下的集中控制,而圣菲研究所的系统实行由下而上的分散协调。前一种控制方式因此是预设的自觉的固定的,而后一种控制方式是后生的自发的演变的。前一种系统的动力之源在整体、中枢,是整体赋予部分以活力;后一种系统的动力之源在个体、基层——因为只有个体是有意识、有目的的积极活动的主体,是它们的交互作用形成了无意识的整体的宏观秩序。最后我想再揭示一下贝塔朗菲系统论与圣菲研究所系统论在“涌现”概念上的歧义。贝塔朗菲系统论的涌现概念即我们多年来熟知的那种涌现概念,其核心含义是;整体产生的孤立部分所不具有的崭新性质,事物组成的高层次对于低层次的不可还原性。而圣菲研究所的涌现概念如霍兰在他的《涌现》一书中所定义的已经有了“异味”:“涌现就是由简单的行动组合而产生的复杂行为”;“涌现现象的基本特征:简单中孕育着复杂”。霍兰还说:“本书的主要思想就是,对涌现的研究是与这样一种能力密切联系的,即用比较少的一系列规则,去确定较大复杂领域的能力。”贝塔朗菲的涌现概念讲的是整体与部分的关系,它的提出是为了反对化简或还原的方法;霍兰的涌现概念讲的是简单性和复杂性的关系,他对问题的提法使化简的思想跃然纸上。这是由于复杂适应系统理论主张:个体在局部区域根据少数简单规则发生相互作用,就可以自下而上形成系统整体复杂有序的功能模式。其立论的一个实例如下:大雁南飞排列成整齐的队列并非由于有一只领头鸟在指挥它们这样做,而是由于每只大雁在飞行中都遵循它和邻近大雁相互位置关系的一些简单规则行动,因此鸟的群集这样的复杂行为完全可以从实施局部的简单规则中涌现出来。问题就在于找到低层次个体间局域的相互作用的简单规则,从而“把对涌现的繁杂的观测还原为简单机制的相互作用”。尽管在这些简单规则与它们所导致的复杂现象之间没有可理解的直接联系,人们还是可能以某种方式找到这些简单规则实行还原或部分还原。需要说明的是圣菲研究所的还原方式不是从整体还原到个体,而是还原到个体相互作用的简单规则,因此可以考虑说它试图建立一种新型的还原论。总之,贝塔朗菲不可还原的涌现到圣菲研究所那里变成了可以还原的涌现,这一点也使我们不能简单地把复杂性理论纳入系统论的框架。

历届化学诺贝尔奖的得主是谁?

1985年 J.卡尔、H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法 1986年 D.R. 赫希巴奇、李远哲(中国台湾人)、J.C.波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学 1987年 C.J.佩德森、D.J. 克拉姆(美国人) J.M. 莱恩(法国人)合成冠醚化合物 1988年 J. 戴森霍弗、R. 胡伯尔、H. 米歇尔(德国人)分析了光合作用反应中心的三维结构 1989年 S. 奥尔特曼, T.R. 切赫(美国人)发现RNA自身具有酶的催化功能 1990年 E.J. 科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论 1991年 R.R. 恩斯特(瑞士人)发明了傅里叶变换核磁共振分光法和二维核磁共振技术 1992年 R.A. 马库斯(美国人)对溶液中的电子转移反应理论作了贡献 1993年 K.B. 穆利斯(美国人)发明“聚合酶链式反应”法 M. 史密斯(加拿大人)开创“寡聚核苷酸基定点诱变”法 1994年 G.A. 欧拉(美国人)在碳氢化合物即烃类研究领域作出了杰出贡献 1995年 P.克鲁岑(德国人)、M. 莫利纳、F.S. 罗兰(美国人) 阐述了对臭氧层产生影响的化学机理,证明了人造化学物质对臭氧层构成破坏作用 1996年 R.F.柯尔(美国人)、H.W.克罗托因(英国人)、R.E.斯莫利(美国人) 发现了碳元素的新形式——富勒氏球(也称布基球)C60 1997年 P.B.博耶(美国人)、J.E.沃克尔(英国人)、J.C.斯科(丹麦人)发现人体细胞内负责储藏转移能量的离子传输酶 1998年 W.科恩(奥地利)J.波普(英国)提出密度泛函理论 1999年 艾哈迈德-泽维尔(美籍埃及人)将毫微微秒光谱学应用于化学反应的转变状态研究 2000年 黑格(美国人)、麦克迪尔米德(美国人)、白川秀树(日本人)因发现能够导电的塑料有功 2001年 威廉·诺尔斯(美国人)、野依良治(日本人) 在“手性催化氢化反应”领域取得成就巴里·夏普莱斯(美国人)在“手性催化氧化反应”领域取得成就。 2002年 约翰-B-芬恩(美国人)、田中耕一(日本人)在生物高分子大规模光谱测定分析中发展了软解吸附作用电离方法。 库特-乌特里希(瑞士人)以核电磁共振光谱法确定了溶剂的生物高分子三维结构。 2003年 阿格里(美国人)和麦克农(美国人)研究细胞隔膜 2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“亡”的重要机理。 2005年 三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理查德·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典皇家科学院说,这是重要基础科学造福于人类、社会和环境的例证。 2006 美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖 2007 德国科学家格哈德·埃特尔因在表面化学研究领域作出开拓性贡献而获得2007年诺贝尔化学奖。

求采纳