1.通常我们为了延长食物的保质期用如下方法

2.求多个关于化学的趣事

3.水的温度

4.氯化镁(MgCl2.6H2O)和菱苦土(MgO)混合能制成坚硬耐腐蚀的镁氧水泥,其混合比例是多少才能够达到较好效果?

5.刚玉(红宝石、蓝宝石))Corundum

6.硫化钠形成过程

7.有色金属工业“十二五”发展规划的主要任务

8.盐矿详细资料大全

通常我们为了延长食物的保质期用如下方法

新疆粉末冶金厂家_新疆粉末高温合金价格

大家都喜欢把食物放进冰箱里去保鲜。并不是所有的食物都能放进冰箱,尤其是以下这几种常见食物。 西红柿西红柿经低温冷冻后,肉质呈水泡状,显得软烂,或出现散裂现象,表面有黑斑,煮不熟,无鲜味,严重的则腐烂。 香蕉若把香蕉放在12℃以下的地方贮存,会使香蕉发黑腐烂。 鲜荔枝若将荔枝在0℃的环境中放置一天,即会使其表皮变黑,果肉变味。 巧克力巧克力在冰箱中冷藏后,一旦取出,在室温条件下即会在表面结出一层白霜,极易发霉变质,失去原味。 火腿若将火腿放入冰箱低温贮存,其中的水分就会结冰,脂肪析出,火腿肉结块或松散,肉质变味,极易腐败。 面包:面包在烘烤过程中,面粉中的淀粉直链分部已经老化,这就是面包产生弹性和柔软结构的原因。随着放置时间的延长,面包中的支链淀粉的直链部分慢慢缔合,而使柔软的面包逐渐变硬,这种现象叫“变陈”。“变陈”的速度与温度有关。在低温时(冷冻点以上)老化较快,而面包放冰箱中,变硬的程度来得更快。 黄瓜青椒:黄瓜、青椒在冰箱中久存,会出现冻“伤”——变黑、变软、变味。黄瓜还会长毛发粘。因为冰箱里存放的温度一般为4℃至6℃左右,而黄瓜贮存适宜温度为10℃至12℃,青椒为7℃至8℃。故不宜久存。 在没有冰箱的时代,为了使食品保存的时间延长,人们往往把食物高温蒸煮,然后密封保存。(这是为什么呢?请对下列现象作出解释!) 首先,高温蒸煮可以杀死食物中的绝大部分细菌等有机物,使食物失去变质(腐败)的源头。进而密封,使外界细菌无法进入,以达到使食物长久保存而不变质的目的。 类似的方法还有,腌制、烘干等。也是创造一个细菌无法繁殖的环境,使食物不会变质。 腌制是使食物含盐量达到很高的浓度,使细胞无法摄取营养水分而无法生存,(这个可以参考细胞膜的渗透原理)。比如,咸鱼、咸菜。 烘干多用于面食,使食物缺乏细菌繁殖所需要的水分。当然这个方法仅适用于空气干燥地区,例如:新疆的馕饼,北方的干粮、炒面等等。 鸡蛋:鲜蛋放一段时间后,蛋黄容易粘壳或散黄。这是因为,放的时间长了,蛋白中的粘液素会在蛋白酶的作用下慢慢变稀,失去固定蛋黄的作用。如果把鸡蛋大头朝上竖放,蛋头内有一个气室,里面的气体就会使蛋黄无法贴近蛋壳。 蔬菜:把蔬菜的腐烂部分摘除,放进塑料袋内,把袋口扎紧,置于阴凉干燥之处。用此法保存黄瓜、柿子椒、莴笋、小青椒、香菜等及未成熟的西红柿效果较好。 隔夜面包:把面包用原来的包装蜡纸包好,再用几张浸了冷水的湿纸包在外层,放在一个塑料袋里,将袋口扎牢;或在装有面包的塑料袋中,放一根鲜芹菜,可以使面包保持新鲜滋味。 1 清理冰箱 在去商场购买大批量食物之前,应先将冰箱里那些将过保质期,或看上去、闻起来可疑的食物统统扔掉;将食品柜内用热肥皂水洗净并晾干;把冰箱内的温度调节好(冷藏室的温度在4℃左右,冷冻室的温度在-18℃左右),手动调节后,冰箱内的平均温度一般会在6小时后调整过来。 2 2小时原则 任何食品——即使是最不容易熟透的火鸡,在做成熟菜之前,准备时间不宜超过2小时。一旦食物长时间地、完全暴露在室温环境下,细菌会迅速增长,因此食用者患病的几率也会增加 那么,到底什么食物需要冷藏呢?答案是:任何潮湿的食物都易腐败,因此均需冷藏。不要认为土豆泥就一定比烤乳猪安全得多,如果你用的保存方法不当,它照样会成为细菌的天堂,令你防不胜防。 3 分类处理食物 分量大的食物最好安排在最后制作成菜肴,以免在取出、制作、盛出、摆放的过程中受到更多污染;将小份的食物按每位客人1份的标准准备好,并一一单独盛出,剩余的则保存在冰箱或烤箱里,以备在宴会进行过程中不断进行补充;凉菜的温度在4℃以下时,能呈现最佳风味,而热菜则需保持在60℃左右,既吃起来可口又不会令营养成分流失过多。 4 细心包装 分量多的食物在烹制好后,1餐内吃不完的部分应提前分离出来,快速而均匀地降温,然后冷藏;最好将肉类食物切成薄片,用保鲜膜包好,再同其他食物一起放入冷藏室中,这样不仅会令其快速降温,还能有效地利用冰箱空间;关上冰箱门之前,要做的最后一件事情是给每一份食品贴上标签,标明名称与烹制时间。 5 冰箱不能被塞得太满 冰箱里的食物不能过满,因为冷藏保鲜除了需要合适的温度,还需要空气流通。与其让食物把冰箱塞得满满的,最大程度地降低食物的新鲜程度,令其失去原有好味道,不如将多余食物直接转送给亲朋好友、街坊邻居,既增进感情,又能帮助你吃得精致、健康。 6 食用前重新加热 为了杀死冷藏食物中的细菌,在次日食用之前,应将食品加热到75℃以上(肉汤必须煮沸3分钟)。如果你不清楚温度如何控制,可以借用厨房专用温度计,来确保达到适合温度。 做到上面这些,一开始会让你觉得比较麻烦,但绝对值得去做,而且养成良好的习惯后,便不再觉得是一种琐碎的负担。为了您和家人的健康,不妨按照文中所讲细心实践吧。 1.生鲜食物买回家,尽速冷藏。鱼、肉、海鲜等买回来,清洗之后拭干水分,放进干净的保鲜盒。如果当天或隔天就要处理,可以放进冰箱冷藏室;超过2天以上才煮的,就要入冷冻室保存。 2.注意食物的保存期限。冷藏、冷冻肉或鱼类的包装上多半印有保存期限,应该注意在这个日期之前吃完;如果是买自农贸市场,没有列出保存期限,建议也要在7~10天之内吃完,超过保鲜期最好就舍弃。 3.生、熟食分开存放。将冰箱内分区存放东西,熟食、剩菜等集中放置在冷藏室上层;生鲜鱼肉等放在下层,以免生食物污染了熟食。 4.每1~2星期整理、清洁冰箱一次。定期清理及丢弃过期、不新鲜、闻起来有异味的食物,并可以用稀释过的漂白水擦拭、消毒冰箱。 5.注意冰箱温度。冷藏室温度应该维持在摄氏7度以下,冷冻库则在摄氏零下18度以下 环保禁忌: 1.塞爆冰箱。如果冰箱里东西存放太多,会影响冷空气循环,使冷却、保鲜效果变差。冷藏库最好保留40%左右空间,不要全塞满,而冷冻库也只存放近1~2星期之内要吃的食物。另外,不要把食物挡在冷气出风口处,以免影响冰箱内温度。 2.频繁开关冰箱、打开很长的时间。每一次打开冰箱,都会使冰箱内的温度快速上升(5℃~20℃左右),然后要花数十分钟才会恢复原来的冷度,既耗费电又不利于保存食物。 土冰箱:把食物装在一个箱子里,再放在大缸里,周围洒满沙子,不时给沙子浇水。 野外活动中很让人头痛的是如何保存食物。有些食品如饼干、方便面等包装食品易于保存,而新鲜的肉类、禽类、鱼、虾、新鲜蔬菜等在炎热的夏季易变质腐败而无法食用。一般野外活动无法携带冰箱、冷藏柜之类的设备,只能因地制宜取一些切实可行的土办法加工和保存食物。 一.熏晒法 熏制食品可以使食品保存时间延长,且味道适口,如熏肉、鸡、鱼等。晒制或风干,也可以长时间保存食物。在野外活动钓到鱼就可以用晒制法将鱼晒成鱼干保存或食用,方法如下:把鱼脊骨连头部切开(鱼腹部不要切断)成一片,去掉内脏洗净,在鱼的两面抹上盐,用竹片或木棍在鱼头部撑开,挂起或平摊在阳光下晒,几日后即晒制成鱼干,可供长时间食用。 二.风干法 把肉、禽类风干也是一种食品保存方法,藏族喜欢吃的一种食品风干羊肉、风干牛肉就属此类食品。 在每年的秋季将牛肉挂在背阴处,靠干燥的风吹,将肉中的水分去掉,风干后食用,一般这类风干方法在内地空气中水分含量大的地区不宜用,在青藏高原和大西北,空气干燥,湿度低的地区方能用。风干食品顾名思义靠热风吹干,绝不能在太阳下晒。风制食品另一种方法就是将食物擦上盐及其它调味品,或用酱油浸红,吊在风口处靠风吹至肉硬化后即可。如风鳗、风鸡、风青鱼、风*、牛肉等风制食品,肉不宜太厚(太厚不易风干)、太咸。 食用时将风制食物烹熟食用。 在野外活动中也可将易坏的食物用塑料袋密封,放在流动的河水中保存。 我们将羊肉封闭在三层塑料袋中放在冰河里,用石块压好,随吃随取,可保持二十天肉不变色,不变味。忌将肉不封装直接放入水中保存,水泡过的肉,营养成分流失,且河水中的泥沙沾在肉上无法食用。 1年前

求多个关于化学的趣事

一种元素的命名

居里夫人(法国物理学家、化学家。原籍波兰,1867 —1934)在对沥青铀矿和铜矿进行检查的时候,发现这两种矿物中,含有一种比铀或钍的放射性强度更大的物质,她意识到:这是一种还没有被人认识的新元素。她对丈夫说:“使这种新元素的存在将来能够证明的话,我想叫它钋,来纪念我的祖国——波兰。”

玛丽·居里虽侨居国外,并同法国科学家皮埃尔·居里结了婚,但她从小就热爱祖国波兰,时时刻刻没有忘记被沙俄帝国侵占的祖国。她想用新元素的命名来为祖国争得骄傲和光荣!寄托她那火一样的爱国热情。“好好!”皮埃尔·居里说:“波兰是你的祖国,也可以说是我的祖国!”紧张的工作开始了,淘汰,没日没夜地淘汰,研究的范围越来越小。18年7 月,他们果然在含铋的部分矿物中,分析出一种新的放射性元素,其化学性质与铋相似,放射性比纯铀强400 倍。“啊,新元素,钋,钋。”居里夫人扑在丈夫的怀里,激动地高喊着“钋,钋!”两行热泪洒在丈夫的胸膛上。

“钋、波兰!波兰,钋!”皮埃尔也从心底发出了欢呼

第一个享用氧气的是老鼠

我们知道,没有氧气人类就不能生存。然而,是谁发现了氧气呢?在众多讨论发现氧气的著作中,约瑟夫·普利斯特里所著的名为《几种气体的实验和观察》,最饶有兴味。

约瑟夫·普利斯特里在1733 年3 月13 日生于英国黎芝城附近的飞尔特黑德镇。他一生大部分时间实际上是当牧师,化学只是他的业余爱好。他所著的《几种气体的实验和观察》于1766 年出版。在这部书里,他向科学界首次详细叙述了氧气的各种性质。他当时把氧气称作“脱燃烧素”。普利斯特里的试验记录十分有趣。其中一段写道:

“我把老鼠放在‘脱燃烧素’的空气里,发现它们过得非常舒服,我自己受了好奇心的驱使,又亲自加以试验。我想读者是不会感到惊异的。我自己试验时,是用玻璃吸管从放满这种气体的大瓶里吸取的。当时我的肺部所得到的感觉,和平时吸入普通空气一样;但自从吸过这种气体以后,经过好多时候,身心一直觉得十分轻快舒畅。有谁能说这种气体将来不会变成时髦的奢侈品呢?不过现在只有我和两只老鼠,才有享受呼吸这种气体的权利啊!”当时,他没有把这种气体命名为“氧气”,而只是称它“脱燃烧素”。在制取出氧气之前,他就制得了氨、二氧化硫、二氧化氮等,和同时代的其他化学家相比,他用了许多新的实验技术,所以被称之为“气体化学之父”。

1783 年,拉瓦锡的“氧化说”已普遍被人们接受。虽然普利斯特里只相信“燃素学”,但是他所发现的氧气,却是使后来化学蓬勃发展的一个重要因素,各国人民至今都还很怀念他。

鲨鱼也有克星?

以《老人和海》一文而闻名于世的海明威在自己熟悉的海域里做以药防鲨实验,把含有硫酸铜和不含硫酸铜的诱饵互相交错的置于海面上。结果,两天后,他惊奇地发现,鲨鱼已把不含硫酸铜吃得精光,相反,含硫酸铜的诱饵动却未动,海明威高光地跳起来,他终于发现,硫酸铜可以防鲨鱼。

二战时,战争不仅在陆地上,海面上仍充满战争,空前残酷,被击中的战船上的船员只有弃船而逃,却面临另一挑战--鲨鱼。因此,美国号召全国有识之士来研究防鲨药品,由海明威的故事,他们很快地配备起用硫酸铜作“护身符”来防鲨鱼。

肥皂的历史

在我们的生活中,一夭也离不了肥皂。洗脸用香皂:洗澡用药皂;洗衣服用洗衣皂。脸要天天洗。衣服也要勤洗勤换。衣服穿久了,由于尘土、油污和汗水的沾污,会散发出酸臭味。带有油污的衣服是滋生病菌的温床。脏东西还会腐蚀、毁坏织物的纤维,只有经常洗涤才能使衣服延年益寿。

古时候,人们在河边青石板上,将衣服折叠好,反复用木棒捶打,靠清水的力量洗去衣服上的污垢。这样洗衣服,既费力,效果又不好。后来有人发现有一种天然碱矿石,溶化在水里滑腻腻的,去油污还挺有效。皂荚树结的皂荚果,泡在水里,也可以用来洗衣服。 同样样,也能洗掉油污。

古时候的埃及,就有人发现用草木灰和一些羊脂混合以后得到的一些东东,特能去污这大概是最早的肥皂了。古时候的法国(那时叫高卢)人用草木灰水和山羊油做成一种粗肥皂,有点象我们今天理发馆里的洗发水。稍后一些时候,人们将猪油拌和天然碱,反复揉搓挤压,得到跟今天的肥皂差不多的“猪胰子皂”。

我的爷爷、奶奶就用过这种猪胰子皂呢!有些地方把肥皂叫做“胰子”就是这个缘故。

我们现在用的肥皂是从工厂的大锅里熬出来的。制皂工厂的大锅里盛着牛油、猪油或者椰子油,然后加进烧碱(氢氧化钠或碳酸钠)用火熬煮。油脂和氢氧化钠发生化学变化,生成肥皂和甘油。因为肥皂在浓的盐水中不溶解,而甘油在盐水中的溶解度很大,所以可以用加入食盐的办法把肥皂和甘油分开。因此,当熬煮一段时间后,倒进去一些食盐细粉,大锅里便浮出厚厚一层粘粘的膏状物。用刮板把它刮到肥皂模型盒里,冷却以后就结成一块块的肥皂了。药皂和一般的肥皂差不多,只是加进了一些消毒剂。 香皂一般是用椰子油和橄榄油制造,并且加进了香料和着色剂,所以有散发出各种香味和五颜六色的香皂。甘油是制皂工业的重要副产品,甘油在国防、医药、食品、纺织等方面,都有很大的用途。 肥皂解放前又称“鬼子膏”,因为有很多是从日本来的。

神秘的战船起火案

从前,古罗马帝国的一支庞大船队耀武扬威地出海远征。船队驶近红海,突然,一艘最大的给养船上冒出了滚滚浓烟,遮天蔽日。远征的战船队只好收帆转舵,返航回港。

远征军的统帅并不甘心,费尽心机要查出给养船起火的原因。但是,查来查去,从司令官一直查到伙夫、马弃,没有任何人去点火放火。

这桩历史奇案还是后代的科学家研究出了一个结果,找到了起火的原因。原来是给养船的底舱里堆积得严严实实的草自发燃烧起来的。这种现象叫自燃。

草怎么会自燃呢?

给养船底舱的草塞得密不透凤,有的开始缓慢地:氧化,这实际上是一种迟缓的燃烧,放出热来,热散不出去,热量越聚越多,温度升高,终于达到草的着火点,于是就自发地着火了。

在我们的生活中,自燃现象也不少见。农村的柴草垛,工厂的煤堆,有时会莫名其妙地冒热气,甚至生烟起火。有些废弃的煤矿,往往连续不断地发生自燃。弄清了发生自燃的科学道理,我们就可以设法预防了。

在堆放煤和柴草的时候,垛不能太大、太高,防止热量聚集。

在煤堆中央,埋进几个铁篓子,从篓子里伸出铁管,通到煤堆顶上,这样可以使内部积存的热量迅速发散出来。

保持良好的通风,可以把缓慢氧化产生的热带走,降低温度。消除了燃烧的温度条件,自燃也就杜绝了。有经验的仓库工经常翻仓倒垛,也是为了防止可燃物质白燃。

当然不是说你想防止就能防止。请大家多关注一下“火焰山”——正在燃烧的新疆地下煤矿!

发现氟的悲壮历程

在化学元素史上,参加人数最多、危险最大、工作最难的研究课题,莫过于氟元素的发现。自1768年德国化学家马格拉夫(Marggraf,A.S.1709-1782)发现氢氟酸以后,到1886年法国化学家莫瓦桑(Moissan,H.1852-1907)制得单质的氟,历时118年之久。在这当中不少化学家损害了健康,甚至献出了生命,可以说是一段极其悲壮的化学元素史。

1768年马格拉夫研究萤石,发现它与石膏和重晶石不同,判断它不是一种硫酸盐。1771年化学家舍勒用曲颈甑加热萤石和硫酸的混合物,发现玻璃瓶内壁腐剂。1810年法国物理学、化学家安培,根据氢氟酸的性质的研究指出,其中可能含有一种与氯相似的元素。化学家戴维的研究,也得出同样的看法。1813年戴维用电解氟化物的方法制取单质氟,用金和铂做容器,都被腐蚀了。后来改用萤石做容器,腐蚀问题虽解决了,但也得不到氟,而他则因患病而停止了实验。接着乔治·诺克斯(Knox,G.)和托马斯·诺克斯(Knox,R.T.)两弟兄先用干燥的氯气处理干燥的氟化汞,然后把一片金箔放在玻璃接受瓶顶部。实验证明金变成了氟化金,可见反应产生了氟而未得到氟。在实验中,弟兄二人都严重中毒。继诺克斯弟兄之后,鲁耶特(Louyet,P.)对氟作了长期的研究,最后因中毒太深而献出了生命。法国化学家尼克雷(Nickles,J.)也遭到了同样的命运。法国的弗雷米(Fremy,E.1814-1894)是一位研究氟的化学家,曾电解无水的氟化钙、氟化钾和氟化银,虽然阴极能析出金属,阳级上也产生了少量的气体,但始终未能收集到。

同时英国化学家哥尔(Gore,D.G.1826-1908)也用电解法分解氟化氢,但在实验的时候发生爆炸,显然产生的少量氟与氢发生了反应。他以碳、金、钯、铂作电极,在电解时碳被粉碎,金、钯、铂被腐蚀。这么多化学家的努力,虽然都没有制得单质氟,但他们的经验和教训都是极为宝贵的,为后来制取氟创造了有利条件。

莫瓦桑出生于巴黎的一个铁路职员家庭。因家境贫穷,中学未毕业就当了药剂师的助手。他怀着强烈的求知欲,常去旁听一些著名科学家的讲演。1872年他在法国自然博物馆馆长和工艺学院教授弗雷米的实验室学习化学,1874年到巴黎药学院的实验室工作,1877年获得理学士学位。1879年通过药剂师考试,任高等药学院实验室主任。1886年成为药物学院的毒物学教授。1891年当选为法国科学院院士。1907年2月20日在巴黎逝世。他在化学上的创造发明很多,现在主要介绍他在氟方面的研究。

1872年莫瓦桑当上弗雷米教授的学生,开始在真正的化学实验室工作了。

弗雷米教授是当时研究氟化物的化学家,莫瓦桑在他的门下不仅学到了化学物质一般的变化规律,而且还学到了有关氟的化学知识和研究过程。他知道早在60年代安培和戴维就已证明,盐酸和氢酸是两种不同的化合物。后一种化合物中含有氟,由于这种元素反应能力特别强,甚至和玻璃也能发生反应,以致人们无法分离出游离的氟。弗雷米反复做了多种实验,都没有找到一种与氟不起作用的东西。虽然他知道制单质氟这个课题难着了许多化学家,可是莫瓦桑对氟的研究却非常感兴趣,不但没有被困难所吓倒,反而下定决心要攻克这个难关。由于工作的变化,这项研究没有及时进行,所以在10年以后,才集中精力开展研究。

莫瓦桑先花了好几个星期的时间查阅科学文献,研究了几乎全部有关氟及其化合物的著作。他认为已知的方法都不能把氟单独分离出来只有戴维设想的方法还没有试验过。戴维认为:磷和氢的亲合力极强,如果能制氟化磷,再使氟化磷和氧作用,则可能生成氧化磷和氟,由于当时还没有方法制得氟化磷,因而设想的实验没有实现。于是莫瓦桑用氟化铅与磷化铜反应,得到了气体的三氟化磷,然后把三氟化磷和氧的混合物通过电火花,虽然也发出了爆炸的反应,但并没有获得单质的氟,而是氟氧化磷。

莫瓦桑又进行了一连串的实验,都没有达到目的。经过长时间的探索,他终于得出了这样的结论:他的实验都是在高温下进行的,这正是实验失败症结所在。因为氟是非常活泼的,随着温度的升高,它的活泼性也就大大地增加了。即使在反应过程中它能够以游离的状态分离出来,它也会立刻和任何一种物质相化合。显然,反应应该在室温下进行,当然,能在冷却的条件下进行那就更好一些。看来电解是唯一可行的方法了。他想如果用某种液体的氟化物,例如用氟化砷来进行电解,那么怎样呢?这种想法显然是大有希望的。莫瓦桑开始制备剧毒的氟化砷了,随即遇到了新的困难,原来氟化砷是不导电的。在这种情况下,他只好往氟化砷里加入少量的氟化钾。这种混合物的导电性能好,可是在反应开始几分钟后,阴极表面覆盖了一层电解析出的砷,于是电流中断了。莫瓦桑疲倦极了,十分艰难地支撑着。他关掉了联通电解装置的电源,随即倒在沙发椅上,心脏病剧烈发作,呼吸感到困难,面色发黄,眼睛周围出现了黑圈。莫瓦桑想到,这是砷在起作用,恐怕只好放弃这个方案了。出现这样的现象不是一次,曾因中毒而中断了四次实验。莫瓦桑的爱妻莱昂妮看到他漫无节制地给自己增加工作,而且又经常冒着中毒危险,对他的健康状况极为担心。

可是莫瓦桑仍然继续进行实验,设计在低温下电解氟化氢。由于干燥的氟化氢不导电,于是往里面加入少量的氟化钾。他把这个混合物放在一支U形的铂管中,然后通电流。在阴极上很快就出现了氢气泡,但阳极上却没有分解出气体。电解持续近一小时,分解出来的都是氢气,连一点氟的影子也没有。莫瓦桑一边拆卸仪器,一边苦恼地思索着,也许氟根本就不能以游离状态存在。当他拨掉U形管阳极一端的塞子时,惊奇地发现塞子上覆盖着一层白色粉末状的物质。可不是么,原子塞子被腐蚀了!氟到底还是分解出来了,不过和玻璃发生了反应。这一发现使莫瓦桑受到了极大的鼓舞。他想,如果把装置上的玻璃零件都换成不能与氟发生反应的材料,那就可以制得单体的氟了。荧石不与氟起作用,用它来试试吧,于是把荧石制成试验用的器皿。莫瓦桑把盛有液体氢和氟化钾的混合物的U形铂管浸入制冷剂中,以铂铱合金作电极,用荧石制的螺旋帽盖紧管口,管外用氯化甲烷作冷冻剂,使温度控制在-23℃,进行电解。终于在1886年第一次制得单质氟。莫瓦桑的成就经过著名化学家的审查,认为是无可争论的。为了表彰他在制氟方面所作的突出贡献,法国科学院发给他一万法郎的拉·卡泽奖金。20年以后,又因他研究氟的制备和氟的化合物上的显著成就,而获得了1906年的诺贝尔化学奖。

石灰的趣事

※冷水为什么遇冷的石灰会发热甚至沸腾

乍看来,的确有些奇怪,热从何来?原来生石灰(氧化钙)一遇水后,立刻发生化学反应,生成所谓熟石灰(氢氧化钙),这个化学作用是一个放热作用,就好像煤遇空气点燃后发生的化学反应,也是放出热量一样。生石灰和水反应放用的热量相当大,如一千克生石灰和水反应所放出的热量,如无损失的话,可以将 3.5千克的水煮沸,厉害吧?

※石灰涂到墙上后,为什么很难干?

我们知道泥土涂在墙上,很快就会干,但石灰涂到墙上后,往往几天都干不了,为什么呢?原来,生石灰和水反应后生成的熟石灰(氢氧化钙)遇到空气中的二氧化碳发生反应,变成了碳酸钙和水,空气中的二氧化碳含量很少,因为这个化学作用进展得很慢,因此,较长时间内,因反应有水生成,所以墙壁就不容易干了。

※石灰墙为什么越来越硬,颜色越来越白?

我们已知道了熟石灰(氢氧化钙)和二氧化碳反应生成碳酸钙和水,而碳酸钙呢,是一种很坚硬,并且很洁白,因为氢氧化钙较松软,反应慢慢变成碳酸钙,所以,石灰墙越来越硬,越来越白

1945年的两枚

1945年夏季,第二次世界大战已经临近结束,纳粹统治已被推翻,日本法西斯强盗在中国和亚洲战场的败局已经注定。7月16日美国在新墨西哥州阿拉莫高多沙漠试验场成功地爆炸了世界上第一颗,并迅速决定将其用于轰炸日本城市。为确保突袭的顺利,美国事前取了一系列的周密准备工作,尤其在确定突袭日期时,把气象条件放在突出的位置上。在杜鲁门批准的作战命令中,有这样一段话:“第509大队8月5日以后,只要天气允许,即可使用特殊(指当时尚未公开的),以目视轰炸突袭广岛、、长崎等目标之一”。这里的“天气允许”,就是指飞行气象条件以及达到目标上空的向下垂直能见度条件。之所以选中广岛、、长崎等城市,就是因为它们是军事设施或工业重地,容易取得轰炸后的威慑效果。

广岛有一个装卸军港,工业较发达,还驻扎有日本第二军和一个军区司令部。当时广岛已有三周时间没有下雨,天气很干旱,建筑物很容易燃烧,被美军作为首选投弹目标。在日本岛北端,有钢铁、等工业,也是一个铁路枢纽,被确定为第二个目标。位于岛西部的长畸是一个港口和工业城市,由于处于低洼谷地,因此只被选作因气象条件恶劣或其它原因无法投弹后的预备目标。空投,要避开风雨雷电,还要绝对保证飞行安全,可见气象保障至关重要,是保证投掷成功的首要条件。因此美军要求气象部门随时掌握日本的气象情报,并且至少提前24小时作出目标城市的天气预报,以便轰炸前有足够的准备时间。

8月2日,509大队的B-Z9型轰炸机在美国的提尼安岛载着组装好了的,等待合适的天气。2日、3日和4日,天气一直不好,阴云密布,有时还下着雨,使得飞机无法起飞。美军最高司令部为此十分恼火和着急,天天派遣气象侦察飞机起飞观测。8月5日美军气象部门通过对大量的气象资料进行分析,预报6日广岛地区阴雨过去,天气放晴。空勤和地勤人员都提前做好了准备。果然,6日凌晨,气象侦察飞机报告,广岛地区天气晴朗,云量很少,能见度很好。于是,临近凌晨3点时,装载的飞机和其它飞机在夜色中从基地起飞。在晴好少云的气象条件下,美机在广岛投下了第一颗。使广岛遭到了毁灭性的轰炸,人员伤亡惨重。据美日资料,第一颗使广岛死亡71379人,受伤68023人,所有的工业机器都遭破坏。空袭之所以得手,气象的作用非常突出。据美方声称,由于大气能见度较好,重达五吨的,投掷偏差仅240米。

第一颗突袭得手时,由于日本没有立即投降,美国又投掷第二颗,目标是。突袭日期原定于8月11日,但是根据美军气象部门的天气预报,只有9日这天是晴天,随后连续5天都将是恶劣天气,无法投掷。8月8日,前苏联向日本宣战。考虑各方面的因素,美军最高司令部决定把轰炸日期提前到9日。9日,临近凌晨4点,两架气象侦察机和两架轰炸机从美军的空军基地起飞,向飞去。到达上空后,天气条件却并不像军事气象部门预报得那样晴好,整个天空阴云翻滚,烟雾浓密,飞行员用肉眼根本看不到目标。据当时指挥轰炸的阿什沃斯将军回忆,当时轰炸机用了45分钟连续5次降低飞行高度,试图投掷,但都因能见度太差而未能寻找到目标,飞机只好按照预备方案飞向长崎。 不利的气象条件,使得躲过一场灾难。

当载弹飞机到达长崎上空时,才发现长崎也被厚厚的云层遮盖住了,气象条件比预报的要坏得多,同样无法进行目视投弹。但这时飞机燃料已经不多,加之还有一些没能来得及排除的油箱油泵不畅等故障,飞机不可能携弹返航。飞行员接到的命令是必须投弹,于是就临时决定用雷达测物辨别和寻找目标的方法投弹。盘旋了10分钟左右,投弹手已做好了投弹准备,这时,覆盖长崎上空的云层忽然出现了空隙,透过云缝隙勉强看到了山谷中一条跑道。于是在当地时间10点58分,第二颗投到了长崎。由于长崎地处山谷,当时的气象条件也不好,能见度很差,使投弹偏离了目标约2000米,加上当天又没有风,故造成的人员伤亡和物质损失比广岛小。据日本方面提供的资料,使长崎死亡35000人,受伤60000人,失踪5000人,68?3%的工厂被摧毁。

蜘蛛的启示

三百多年前,英国有一位年轻的科学家对“八卦飞将军”蜘蛛发生了浓厚的兴趣。他经常从早到晚,目不转睛地观察蜘蛛。他看见蜘蛛忙忙碌碌,吐丝织网。刚从蛛囊里拉出的细丝是粘液,迎风一吹,一瞬间变成又韧又结实的蛛丝

这位青年科学家想,要能发明一个机器蜘蛛,“吃”进化学药品,抽出晶莹的丝来纺线织布,那该多好啊!他一头扎进化学实验室,摆弄起瓶瓶罐罐,用各种化学药品做开了试验。他用硝酸处理棉花得到了硝酸纤维素,把它溶解在酒精里,制成粘稠的液体,通过玻璃细管,在空气中让酒精挥发干以后,便成了细丝。这是世界上第一根人造纤维。但是这种纤维容易燃烧、质量差、成本高,没法用来纺纱织布。

后来,科学家模仿吐丝的蚕儿,将便宜、易得的木材里的木质纤维素溶解在烧碱和二硫化碳里,做成粘液,再在水面下喷丝,拉出千丝万缕。这就是大名鼎鼎的“人造丝”(粘胶纤维)。它的长纤维可以织成人造丝印花绸、人造丝袜。短纤维造出“人造棉”布、“人造毛”呢。它们穿着舒适,和棉麻织物差不多:透气良好,容易吸水,可以染上漂亮的颜色,而且价格低廉,颇受欢迎。这样,人造纤维在问世仅三十年后,就代替了十分之一的棉、麻、丝、毛。

可是,人们并不满意。人造丝、人造棉潮湿的时候很不结实,洗涤后容易变形,缩水严重。再说,人造纤维虽然扩大了原料的来源,把不能直接纺纱织布的木材、短的棉花纤维、草类利用了起来,可是,毕竟有限。于是,人们眼光从天然纤维跳到了矿物上头,石头、煤、石油能不能变纤维呢?

五十年前,德国出现了用煤、盐、水和空气做原料制成的聚氯乙烯纤维(氯纶)。它的化学成分和最普通的塑料一个样。这是最早的合成纤维。用氯纶织成的棉毛衫裤、毛线衣裤,既保暖又容易摩擦后带静电,穿着它,对治疗关节炎还有好处呢。

比氯纶晚几年出世的尼龙(锦纶),比蛛丝还细,但非常结实,晶莹透明,一下子以它巨大的魅力使人们着了魔。用尼龙丝织成的袜子结实耐磨,一双顶四五双普通的棉线袜穿用。曾经很流行的“的确良”(涤纶),挺括不皱,免烫快于,是产量最大的一种合成纤维。晴纶,俗称“合成羊毛”,蓬松耐晒,用它做的毛线,毛毯,针织衣裤,我们都很熟悉。价廉耐用的维尼龙(维纶),织成维棉布,做床单或内衣,吸水、透气性跟棉织品差不多。维纶棉絮酷似棉花,人称“合成棉花”。除了涤纶、锦纶、睛纶、维纶四大合成纤维外,由丙烯聚合而成的丙纶一跃而起,成为合成纤维的新秀。

丙纶是比重最轻的合成纤维,人水不沉。飞机上的毛毯、宇航员的衣服用它制作,可以减轻升空的负担。如今,化学纤维的年产量已经和天然纤维平起平坐了,而它在国民经济和国防事业上的作用却远远超过了天然纤维。不过,今天规模巨大的“机器蚕”在日夜运转,还多亏了蚕儿吐丝、蜘蛛织网给人们的启示呢!

波尔多葡萄的怪事

法国的波尔多盛产葡萄,所以“波尔多葡萄酒”驰名天下。 但,1878年,名为“霉叶病”的植物狂扫波尔多城,所以葡萄园很快变得枝法调零,面临一片危机。园主们心急如焚,却无计可施。 一个细心的法国人米拉德却发现怪事:公路旁的葡萄树却郁郁郁葱葱,丝毫未受到霉叶病的伤害。经观感察发现这些葡萄树从叶到茎都洒了一些蓝、白相间的东西,经打听,才知园主为防馋嘴的过路人而洒的“毒药”,由石灰与蓝矾混合配制成而。经试验,的确是对付霉叶病的好农药。从此,波尔多地区又变成了“葡萄园世界”,同时,这种农药药以“波尔多液”命名,广泛流传于全世界。 该农药的化学原理是石灰与硫酸铜起化学反应,生成碱式硫酸铜,生成物具有很强的杀菌能力。Ca(OH)2+2CuSO4 = CaSO4+Cu(OH)2SO4

14 斤肉“换” 1 克镭

这是一间没有人用的旧棚屋,玻璃顶棚残缺漏风,里面没有地板,只有一层沥青盖着泥土地。连个象样的凳子都没有,只有几张腐朽的橱桌,一块黑板和一个破旧的铁火炉,炉上安着锈迹斑斑的管子。

1889 年,居里夫人和她的丈夫就是在这间陋室内开始了提炼镭的工作。每天居里夫人穿着沾满灰尘和污渍的工作服,翻倒矿石,搅拌冶锅,倾倒溶液,干个不停。矮小的实验室内,铁屑飞扬,蒸汽熏人,而居里夫人那时又正害着结核病,但她丝毫不顾这些,依然顽强地工作。经常连饭都带到实验室来吃,更不说稍微休息一会儿了。有时候整天用一根粗重的铁条,搅拌一堆沸腾的东西。到了晚上,已是精疲力尽,不能动弹。

就这样,经过45 个月的艰苦努力,居里夫妇终于从400 吨铀沥青矿渣,1000 吨化学药品和800 吨水中,提炼出微乎其微的1 克纯镭。而居里夫人的体重却因此而减轻了14 斤!

水的温度

不存在

[编辑本段]从绝对零度到10亿摄氏度

在整个宇宙当中,温度无处不存在。无论在地球上还是在月球上,也无论是在炽热的太阳上还是在阴冷的冥王星上,这一切无不由于空间位置的不同而存在着温度的差别。例如,太阳表面温度约为6000℃,而处于太阳系里离太阳较远的冥王星的表面温度却只有-240℃。又如,传说中的牛郎星与织女星,在夜里的星空中,它们只是闪烁的小亮点,而怎能让人一下子想到牛郎星的表面最高温度竟达8000℃,织女星的表面最高温度竟达10000℃,真可谓是“热恋之星”。

正因为宇宙中各行星的冷热不同,才决定着生命的存在与否。想想看,如果人类要到太阳去,还没到达早已化为灰焚了;再想想,如果人类要到阴冷的冥王星去,恐怕人的第一次呼吸还没完成就早已在寒冷的温度当中冻成了冰尸。

当然,在这样莫大的宇宙中,只要位置适当,生命是完全可以存在的。现在的地球就是典型一例。地球上生命的诞生有人说是偶然的,其实它也是必然的。第一个有生命细胞的诞生,那是蕴含着“造物主”多少心思啊,其中温度是必不可少的因素之一。因为只有在适宜的温度下,化学反应才能正常进行物质分解或重组,才有了今天这个美丽的世界山川、河流、绿树、红花……才有了生命的诞生。

温度是分子平均功能的标志,它决定一个系统是否与其它系统处于热平衡的物理量,它的基本特征在于一切互为热平衡的系统都具有相同的温度。如当温度较低时,分子、原子振动的速度很小,无法挣脱分子、原子也变小,分子之间距离就较大,此时物质为液态。但随着温度的不断升高,分子运动十分激烈,分子间的距离也变大,此时物质为气体。整个世界这么精彩就是因为这些不同的分子,原子在不同的温度下变化而来的。

在人们的现实生活中,通常比较熟悉的温度范围是—90℃到61℃即地球表面的气温变化范围,其实在宇宙中还有很多关于温度的东西已被人类得知,但我们不熟悉而已,本文将为各位读者提供一部份从最冷的—273.15℃(绝对零度)到最热的5.1亿℃的知识让大家了解一下。

—273.15℃ 绝对零度

绝对零度,即绝对温标的开始,是温度的最低极限,相当于—273.15℃,当达到这一温度时所有的原子和分子热运动都将停止。热力学第三定律指出,绝对零度不可能通过有限的降温过程达到,所以说绝对零度是一个只能逼近而不能达到的最低温度。人类在1926年得到了0.71°K的低温,1933年得到了0.27°K的低温,1957年创造了0.00002°K的超低温记录。目前,利用原子核的绝热去磁方法,我们已经得到了距绝对零度只差三千万分之一度的低温,但仍不可能得到绝对零度。

如果真的有绝对零度,那么能不能检测到呢?有没有一种测量温度的仪器可以测到绝对零度而不会干扰受测的系统(受测的系统如果受到干扰原子就会运动,从而就不是绝对零度了)?确实,绝对零度无法测量,是依靠理论计算定义的。研究发现,当温度降低时,分子的平动就会变慢,那么根据实验数据外推得出,当降到某一温度时,分子的平动能为零,于是就给出了绝对零度的定义。

虽然说,温度存在着理论下限——绝对零度,但是这并不意味着物质在绝对零度的温度状态下一切运动都停止了。从统计热力学的角度看,物质的微观运动大体上可以分为分子平动、分子转动、分子振动、电子运动和核运动等几类。在绝对零度下,描述分子整体平移的分子平动、描述分子绕质心旋转的分子转动确实已经消失,但是分子振动、电子运动和核运动存在最低量子态,是不能被温度冻结的,所以说,客观世界的静止是相对的,运动是绝对的。

—270.15℃ 宇宙微波背景辐射

宇宙微波背景辐射是“宇宙大爆炸”所遗留下的布满整个宇宙空间的热辐射,反映的是宇宙年龄在只有38万年时的状况,其值为接近绝对零度的3K。

—260℃ 星际尘埃的温度

在寒冷的宇宙空间,星际尘埃的温度可低达—260℃。

—250℃ 低温火箭发动机

印度空间研究组织试验成功了一种低温火箭发动机,该发动机的燃料温度为—250℃。在其带动下,发动机冲压涡轮的最高速度达到4万转每分钟,标志着印度空间研究水平跨越了一个具有重要意义的里程碑。

—240℃ 冥王星

从冥王星上看太阳,太阳只是一个闪亮的光点,它从太阳上所接受到的光和热,只有地球从太阳得到的几万分之一,因此,冥王星上是一个十分阴冷黑暗世界。最高温度是—210℃,最低温度是—240℃。除冥王星以外海王星也可达到—240℃。

科学家1898年在实验室第一次得到了—240℃的低温,这时,氢气变成了液氢。

—230℃ 非金属的磁性

非金属材料在低温下也能表现出磁性,这种磁体适用于制造新型计算机存储设备,绝缘设备等。但这类材料在温度超过一定限度时就会失去磁性。目前,临界温度最高的非金属磁体在—230℃左右,即使施加高压也仅能提高到—208℃。

—220℃ 天王星

天王星自转一次的“天王星日”约为17小时14分,因为有快速的自转而和木星一样地呈现东西向的明显条纹。因为距离太阳遥远,天王星大气层云上端温度约在—220℃,表面显淡蓝色。

—210℃ 鲸鱼座τ的尘埃盘

鲸鱼座τ是除了太阳以外离地球最近的类太阳恒星,距离太阳仅约12光年,亮度约3.5等,以肉眼就可以看到。它周遭有尘埃与彗星组成的尘埃盘,这个尘埃盘的直径比太阳系稍大一些,温度仅—210℃左右,可能是因为小行星和彗星彼此碰撞的碎片所形成。

-200℃ 土卫六星

到目前为止,我们尚未发现有任何地外生命存活的迹象。但卡西尼号正在探索的土卫六可能是一个生命起源的实验室。

由于表面温度为—200℃,土卫六不是一个能产生生命的地方,但是它的浓密的大气层中含有许多碳氢化合物。它们通过太阳的紫外光可产生化学反应。光化学反应能产生有机分子,这些碳基化合物是产生生命的第一步。但是土卫六太冷了,以致于无法迈出下一步。它就像是一个深度冻结了的地球。在50亿年后,它将会得到产生生命所需要的热量,因为那时太阳将膨胀成一个熊熊发光的红巨星。只是那时由于太阳已进入生命的暮年,生命大约已经来不及产生了。

-190℃ 低温下出现许多奇怪现象

低温世界就像魔术师,各种物质出现奇妙变化。空气在-190℃时会变成浅蓝色液体,如果把鸡蛋放进去,它会产生浅蓝色的荧光,摔在地上会像皮球一样弹起来;鲜艳的花朵放进去,会变成玻璃一样光闪闪,轻轻的一敲发出“叮当”响,重敲竟破碎了,从鱼缸捞出一条金鱼头朝下放进液体中,金鱼再取出来就变得硬梆梆,晶莹透明,仿佛水晶玻璃制成的“工艺品”,再将这“玻璃金鱼”放回鱼缸的水中,奇怪的是金鱼竟然复活了,又摆动着轻纱一般的尾巴游了起来。

-180℃ “梦的纤维”——凯英拉纤维

凯英拉纤维的性能赛过钢铁和合金,被人们称为“梦的纤维”这种液晶纤维的强度是钢的5倍,铝的10倍,玻璃纤维的3倍,能在—180℃左右连续使用。它主要用作飞机的结构材料、子午线轮胎、船体、运动器具、防护服装和缆绳等。例如:美国波音飞机公司的767型客机用了3吨凯英拉纤维与石墨纤维混杂的复合材料,使机身重量减轻了1吨,与波音727飞机相比,燃料消耗节省30%。

-170℃ 生命存活的低温极限

这样的温度已有最简单的微生物能够生存了。观察表明,大肠杆菌、伤寒杆菌和化脓性葡萄球菌均能在—170℃下生存。

-160℃ 水星

离太阳最近的水星,它和太阳的平均距离为5790万公里,是太阳最近的行星。它表面温差最大,因为没有大气的调节,向阳面的温度最高时可达430℃,但背阳面的夜间温度可降—160℃,昼夜温度差近600℃,这可是一个处于火和冰间的世界。温度变化如此巨大,水星上是不可能有生命的。

—150℃ 木星

木星是太阳系中的第五个行星,木星为太阳系最大的行星,其内部可以放入1300个地球,密度较低,其重量仅为地球的317倍。木星的成份绝大部分是氢和氦。木星离太阳较远,表面温度达—150℃;木星内部散放出来的热是它从太阳接受热的两倍以上。

—140℃ 液氮低温加工橡胶品

橡胶制品是很难降解的高分性材料,将它粉碎到具有广泛用途的精细胶粉十分困难。目前,国际上利用废轮胎工业化生产精细胶粉的方法主要用液氮低温冷冻法,即将橡胶在—130℃到—140℃的温度下冷冻成玻璃化状态再加以粉碎,就能轻易获得优良的精细胶粉。

—130℃ 地球最低气温

地球上最低温出现在南极最高峰——文生峰,这里年平均气温-129℃,夏日平均气温-117.7℃。而地球上第一高峰珠穆朗玛峰夏日平均气温也有-45℃,南极地区的冷烈可见一斑。

—120℃ 金星最低温度

金星日夜温差最大,金星白天温度可达480℃;夜晚最低温度可达—120℃,因此,日夜温差可达600度左右。

—110℃ 酒精温度计

温度计中红色的液体是酒精,酒精在—117℃才会凝结。因而在地球上温度最低的南极洲,酒精温度计也能用。当然温度低于—117℃时,酒精温度计也派不上用场了。

—100℃ 最冷的压缩机

一个国外电脑玩家使用了超过4个压缩机,自制了一套可以降温到—100℃的压缩机系统,来给CPU处理器降温!

—90℃ 地球最低温

在南极的内陆,人们已经测到-88.3℃的低温。

—80℃ SARS不怕低温

SARS的一个显著特点是怕热不怕冷,即使是在—80℃它还能至少生存4天,甚至多达21天,而在56℃下SARS的生存时间不超过90分钟。

—70℃ 北极最低气温

北极地区年平均气温北极地区年平均气温在—15℃~—20℃之间,比南极年平均气温高25℃,冬季时(1月)极夜期为180天,最低气温在—70℃。低温可预防某些疾病,生活在北极的爱斯基摩人是先靠吃海豹肉和海豹油为主,当地人很少有心脏病、心血管、高血压、关节炎等疾病。

—60℃ 火星的温度

在远离地球的火星上,平均温度是—60℃。

—50℃ 我国最冷气温

在我国有过低于-50℃的地区记录不多。中国内蒙古自治区大兴安岭的矣渡河在1922年1月16日曾观测到-50.1℃的温度,是新中国成立前气温记录中的最低值。

新中国成立后,新疆北部的一个气象站在1960年1月20日以-50.7℃的低温首次打破了记录,接着1月21日又以-51.5℃再创全国新记录。中国最北的气象站——黑龙江省漠河气象站1968年12月27日清晨测得了—50.9℃,而在1969年2月13日漠河终于诞生了中国现有气象资料中的极端最低气温记录:—52.3℃。

世界上最不怕冷的花,是出产在中国的雪莲,即使-50℃,也鲜花盛开。

—40℃ 我国最冷的一天

大家都知道我国最北的地方是漠河,漠河在中国有气象记录以来最冷日子是1960年1月21日,日平均气温为—43.8℃。

—30℃ 国色天香牡丹花

牡丹原产我国,喜温凉高燥,忌炎热低湿环境。较耐寒,可耐零下30摄氏度的低温。

在北京门头沟去的一条山谷中,严冬时节温度最低可达—30℃,山里有水的地方基本上都结成厚冰,但这里却有一只泉眼里的泉水千年不冻,并且水里一年四季都生长着茂盛的水草,因此被当地人称为“千年不冻水”。

-20℃ 低温燃料电池组

日本本田公司最近宣布成功地开发出可以在-20℃低温下起动的燃料电池组,体积大幅度减小、功率更大。配备该电池组的汽车得到日本国土交通大臣批准后,已经开始公路行驶试验。

-10℃ 人可以居住生活了

-10℃已是地球上高纬度地区寒冬季节常见的温度了。虽然会感到冰寒透骨,但人已经能够在这样的温度下正常生活了。

0℃ 水的冰点

地球表面的70%是被水覆盖着的,约有14亿千立方米的水量,其中有96.5%是海水,剩下的虽是淡水,但其中一半以上是冰。所以说地球是一个水的星球,正是这样的星球才能孕育出生命,所以“水”是生命之源。有了生命就有生机活力,世界才会更精彩。

既然水能结成冰,水也能变成气体扩散在空气中。当水在0℃时结成冰,就会失去流动性,不再是液体。所以有0℃是“水的冰点”之称。

10℃ 凉爽宜人的赤道城

在南美洲的厄瓜多尔国的首都基多城里,赤道线恰好通过该城。不少人认为通过赤道的城市一定很热。但事实并非如此,这里不论春、夏、秋、冬,一年中月平均气温都在10℃左右,年平均温差只有4℃。是一个四季如春、凉爽宜人的赤道城。

这是因为它位于海拔2800米的高原上。我们知道太阳光是一种短波辐射,当它通过大气时,只有很少部分被大气直接吸收,大部分则照射在地球表面,使地球表面增温。因此愈是靠近地面,由于吸收的热量愈多,温度升得愈高,反之,愈是向高处,吸收的热量愈少温度愈低。所以在高原地带,气候总是比较凉。

20℃ 双孢蘑菇菌丝生长温度

双孢蘑菇菌丝可在5℃~33℃生长,适宜生长温度20℃~25℃,最适宜生长温度22℃~24℃,高温致死温度为34℃~35℃。

30℃ 我是蚊子!

蚊子最喜欢的温度是30℃左右,太高了也受不了。秋天气候变冷温度降到10℃以下时,它们就会停止繁殖,不食不动进入冬眠,直到第二年春天激醒后又出来。

40℃ 人体自身的温度极限

人属于恒温动物,一般说来不会超出35℃~42℃的范围,41℃时人体器官肝、肾、脑将发生功能障碍,连续几天42℃的高烧,足以致使成年人死命。

鸟类和哺乳动物也都属于恒温动物,一般说鸟类的体温较高,在37℃~44.6℃范围内,而哺乳动物的体温较低,哺乳动物一般约在25℃~37℃之间。但总的说来都在40℃上下,与人类的体温差别不很大,这是因为它们跟我们人类都生活在同一个星球上,处在大体相同的环境中的缘故。

此外,经过科学家长期研究和观察对比,认为生活中的理想温度应该是:居室温度保持在20℃~25℃;穿衣保持最佳舒适感时,则皮肤的平均温度为33℃;饭菜的温度为46℃~58℃;饮水时的温度为44℃~59℃;泡茶的温度为70℃~80℃;洗澡水的温度为34℃~39℃;洗脚水的温度为50℃~60℃;冷水浴的温度为19℃~21℃;

50℃~60℃ 沙漠之温

由于沙漠地区的云量少,日照强,又缺乏植被覆盖,空气湿度小,因此白天气温上升极快,大部分时间都在30℃以上,中午最热的时候,温度能上升到50℃以上。在北非曾有高达58℃的记录。

但沙漠的夜间较凉,因为整夜无云,地面辐射强,散热快,夜间最低温度一般在7℃~12℃之间,也有出现薄霜的日子。

70℃ 味道感觉

生理和心理学家的研究表明,人们食用食品时所获得的多种多样的味道感觉,实质上是由于味道和嗅觉协同作用的结果。

一些可以热喝的饮料,如咖啡,其温度在70℃时才味美可口,热牛奶和热菜的温度在70℃左右最为好喝。有些油炸类食品,比如油炸虾,温度应保持在70℃左右,虽然吃起来还有些烫,但这时的味道最美。

80℃ 温泉微生物

许多微生物一般都依靠光合作用而生存,这些依靠光合作用的微生物一般在72℃以下才能生存。然而在1967年,印第安纳大学的布洛克博士发现,在他放在一个叫做“蘑菇塘”80℃泉水中的载玻片上,附着一层微生物细胞。这是首次发现生活在72℃以上的生物。这种嗜热微生物属于细菌类,布洛克博士将它命名为“水生嗜热菌黄石一类”。

90℃ 海底火山口微生物

19年,科学家造访了太平洋的深处的一个海底火山口,这里温度常年在保持90℃,也是阳光不能到达的地方。但科学家惊奇地发现这里到处是生命——多毛虫、虾、蟹和其它生物。那些从来没有见过日光的微生物处在食物链的最底端,多毛虫没有口,没有胃或者其它的消化器官,周围水域的化学物质渗透进体内后,细菌就把它们转为多毛虫能够利用的食物。

100℃ 水的沸点

上面我们了解了水的冰点,那么水的沸点是100℃在一个大气压下,当我们的水开时,它的温度是100℃而且只能保持100℃。但是人们在海拔8000多米的珠穆朗玛峰上煮鸡蛋时开水最高只有80℃,那是因为在8000多米高的地方气压低了,所以水的沸点只有也降低了。

火锅浓汤的温度可高达120℃,最容易烫伤口腔粘膜。所以常常有人吃了火锅后会发生口腔溃烂甚至牙齿发炎肿胀。火锅里的海鲜类食品更应引起重视。

200℃ 地下热岩发电

英国从1987年开始进行岩浆发电实验。在英国一个温度最高的热岩地带,其在6000米深处的热岩可以把水加热到200℃,然后将200℃水的热能再转为电能。

300℃ 变质岩

地壳中的岩石,由于地壳活动或岩浆活动的影响,受到高温、高压的作用和岩浆的化学作用,使原来岩石的内部矿物成分、结构和构造上发生了变化,从而形成一种新的岩石,称为变质岩,这种变化称为变质作用。这一变质过程所要求的温度和压力分别为300℃和100兆帕。

400℃ 城市的污泥处理

在城市中,有工厂的地方污泥比较多,有些河流受污染后也沉积了大量的污泥。科学家为了解决这个污染问题,通过研究发现了污泥中含有可燃物质。加拿大则为此专门建立了一个实验工厂,进行污泥转化为新型燃料的研究工作。他们通过机械方法先将污泥中的大部分水和无用泥沙去掉,再将污泥烘干,然后将干泥放进一个450℃的蒸馏器中,在与氧隔绝的条件下进行蒸馏,就可产生可燃物质。

500℃ 聚光式太阳灶

这种太阳灶是利用抛物面形的反射镜聚光获得较高温度,直径一般为1—2米。由于能量集中,因而热效率较高,可获得500℃的高温。这种聚光式太阳灶在我国农村的一些家庭中,用来做饭、炒菜、煮饲料、烧水。

600℃ 高效燃料电池

日本产业技术综合研究所与名古屋大学的联合研究小组开发出工作温度为600摄氏度、平均每平方厘米发电量0.8瓦、比现有同类电池发电量高出1倍以上的固体电解质型燃料电池。

700℃ 烟头、蚊香的温度

烟头的表面温度虽然只有250℃~300℃,烟头的中心温度一般在700℃~800℃左右,蚊香的燃烧温度也达700℃。

800℃ 火山熔岩

在火山爆发时,总会喷出大量红色的火山熔岩。刚喷出时一般是液体状态,通常温度在800℃—1200℃左右,火山熔岩在流淌的过程中,不断向大气和大地表面散热,产生大量的烟雾。所以火山熔岩在冷却时凝固都是由外向里进行的。

900℃ 矿石的熔化

矿石是较轻的、更活泼的金属物质,它不能被碳在可行的高温下还原出来,因为它们的原子在矿石中结合得更为紧密。这些金属通常是通过电解得到,或通过使它们的化合物与更活泼的金属发生反应而获得,例如,氧化铅和在950℃下电解水晶石(铝和钠的双氧化物)和氟化钙的混合物中的溶化的氧化铅。

1000℃(1千摄氏度) 钻石的形成

常言道:“钻石是女士的最佳良伴”。有趣的是:钻来只是纯碳,而碳是仅次于氢、氦和氧的宇宙间第四种最常见的化学元素。因此,钻石的罕有并不源自其化学元素成分,而是在于它形成的方法和地点。地球上的钻石相信是在100至300公里深;温度接近1000℃的地底形成,其后因火山爆发而带至地面。单以化学成分来看,钻石和用来制造铅笔芯的石墨,其实是近亲。如果你把钻石放入高温火炉;那么最终只会化为普通的石墨。

2000℃(2千摄氏度) “刚玉”

1924年,德国人鲁夫用纯氧化铝粉末成型,在2000℃左右的高温炉中烧结,得到了世界上第一块纯氧化铝制品,但一直到1993年才由西门子公司正式命名,中国人取其白如玉而坚硬不凡,将定译名为“刚玉”。

3000℃(3千摄氏度) 玻璃碳

玻璃碳是一种类似玻璃的碳,它兼有玻璃及碳素材料的双重性能。这种物质如果在真空或非氧化性气氛下的工作温度可达3000℃,而且耐热震性能好,可以作为熔炼高纯物质的坩埚,半导体外延炉感应加热板等,在科学上应用很广泛。

4000℃(4千摄氏度) 太阳黑子

大家都知道太阳黑子,太阳黑子出现比较多的情况下,会产生地磁暴给人们工作带来很多不方便。例如:航海的船舶迷失方向,通信信号连接不上。那么太阳黑子其实并不黑,它们中心的温度在4000℃以上。亮度仍可与上下弦时半个月亮的光相比。只不过在明亮的光球反衬下就显得很黑。

5000℃(5千摄氏度) 日珥

日珥主要突出日两边缘的一种太阳活动现象。它们比太阳圆面暗弱得多,在一般情况下被日晕淹没,不能直接看到,只有在日全食时通过望远镜才能看到。日珥的温度在5000—8000℃之间,一般可以扩散到几十万公里、形状千奇百怪。有的日珥能长期存在。奇怪的是日珥和日冕的温度、密度相差800倍,何以能长期共存,科学家们正在研究。

6000℃(6千摄氏度) 太阳表面

太阳的表面温度达到6000度。太阳大气中有90多种化学元素,其氢的含量最多,约占太阳质量的71%,氦约占27%,其他元素约占2%,包括钠、钙、铁、氧等。正因为这些化学元素每天都在制造核爆炸,放出大量的光和热,给我们生活带来生机。但太阳的能量是有限的,终有一天能量用完后,太阳也就消失了。

一个质量为月球质量的1/1000的微型黑洞,温度约为6000摄氏度,与太阳表面温度相当。

7000℃(7千摄氏度) 地热能

地热能是由地壳抽取的天然热能、这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达7000℃。

8000℃(8千摄氏度) 牛郎星

在中国古代传说当中的牛郎星,在夜里我们观看到时它像一块宝石一样闪闪发亮。其实它的表面温度比太阳表面还要高2000℃,也就是8000℃。

9000℃(9千摄氏度) 水稻的积温

积温是某一时段内逐日平均气温之和。我国云南西南部、广东、福建、海南和台湾等省全年积温都是在8000℃以上,而最南端的海南乐东县莺歌海至三亚沿海一带、西沙永兴岛的全年积温更达9000摄氏度,热量极为丰富,适宜水稻等喜温作物生长。这些地区的水稻生长普遍两季乃至三季。

10000℃(1万摄氏度) 织女星

在夜里我们能观看到和牛郎星相伴的织女星,其温度有10000℃。

100000℃(十万摄氏度) 星云

在星际当中物质分布是不均匀的,有的地方云气体和尘埃比较密集,形成各种各样的云雾天体。这些云雾状的天体就叫星云。环状星云是一颗很有名的行星状星云,它的中心星是一个接近演化终点的白矮星,温度有100000℃,密度也非常高。

1000000℃(百万摄氏度) 日冕

太阳日冕的温度高达100万℃。

俄罗斯科学院圣彼堡技术物理大学成功地研制出一种温度计,可以快速测量热核反应堆中等离子体温度。科研人员在该温度计中使用了特殊结构的激光光源,从而在瞬间就能测量出温度高达1000000℃的等离子体的温度。

10000000℃ (千万摄氏度) 中子星表面

质量和太阳相当的中子星,表面温度约为1000万℃。

核聚变的发生必须具备1千万摄氏度以上甚至几亿摄氏度的高温。

100000000℃(1亿摄氏度) 人类创造的最高温度

人类所能产生的最高温是510000000℃约比太阳的中心热30倍,该温度是美国新泽西的普林斯顿等离子物理实验室中的托卡马克核聚变反应堆利用氘和氚的等离子混合体于1994年5月27日创造出来的。

1000000000℃(10亿摄氏度)及以上 宇宙大爆炸

宇宙大爆炸那一刻,温度达到无穷大;宇宙大爆炸后10负44次方秒,温度约为10000兆兆兆(一兆等于一万个一亿)度;宇宙大爆炸后10负36次方秒,宇宙温度继续下降,当时的温度约为10000兆兆度;宇宙大爆炸后10负32次方秒,温度约为1兆兆度;宇宙大爆炸10负12次方秒后,温度达到10000兆度;宇宙大爆炸后10负6次方秒,温度达到1兆度;宇宙大爆炸后10负4次方秒,温度达到1000亿度,这也是超新星爆发时其星核的温度;宇宙大爆炸后1秒,温度降低到约为100亿度;在大爆炸后的大约3秒,温度降到了10亿度,这也是最热的恒星内部的温度。

氯化镁(MgCl2.6H2O)和菱苦土(MgO)混合能制成坚硬耐腐蚀的镁氧水泥,其混合比例是多少才能够达到较好效果?

氧化镁(MgO)俗称菱苦土、轻烧粉、镁氧粉。密度2.94白色粉末。熔点2852℃,沸点3600℃。溶于酸和铵盐,难溶于水和乙醇。煅烧温度400℃时比表面积为180m2/g。1300℃时比表面积仅为3m2/g。在空气中易潮解。它属于气硬性的胶结材料。(重质氧化镁从略)。

一、氧化镁的矿源:

(一).菱镁矿石是氧化镁的主要来源之一,(MgO)含量占47%左右,MgCO3经过轻煅烧(400~600℃)煅烧后再研磨成的固态粉末(Mgo) 。矿源广布新疆、四川、山东、西藏等自治区和省,储量28亿吨,占世界矿源的30%。

(二). 白云石矿[CaMg(CO3)2]也是氧化镁的主要矿源,而且储量更大分布更广, MgO含量占22%左右。CaO含量占30%左右,其余为48%,MgCO3与CaO理论结构二者是一比一。白云石划定界线是以MgCO3的含量在25%以上为准,否则不能作为生产氧化镁的矿石,也不能称为白云石。

(三).蛇纹石[Mg6(Si4O10)(OH)2]也是生产氧化镁的原材料,主要是水硅酸镁石(3MgO?2SiO2?2H2O).

(四).冶炼轻质镁合金的溶渣同样是生产氧化镁的原材料。

二、氧化镁的外加剂

纯水溶液和氧化镁反应后Mg(OH)2是疏松状态没有强度何谈实用价值。1867年瑞典学者索瑞尔发明了镁氧水泥。用氯化镁水溶液作固化剂在干燥环境中强度和普硅水泥的抗压强度抗折强度几乎是一样的。抗压强度110mpa/28d,抗折强度20Mpa/28d。

(一).六水氯化镁(MgCl2?6H2O)固化剂使氯氧水泥具有和普硅水泥一样的抗压,抗折强度但是它只能在干燥的环境中使用。六水氯化镁又名水氯石,0℃时溶于冷水,在水溶比为281g/100g相对密度1.56、熔点712℃。加热至118℃开始水解,高温时分解成MgO和HCl。

MgCl2?6H2O→Mg(OH)CL+HCL+5H2O

Mg(OH)CL→MgO+HCl

致于四水、二水、一水、无水氧化镁从略。它的掺量占MgO的15~20%

(二).七水硫酸镁(MgSO4?7H2O)是固化剂又是防水剂,分子量为246.48无色结晶或粉末。无溴、苦味。溶于水250℃成为无水硫酸镁(MgSO4 ),400℃以上则还原为MgO。它是由MgO和H2SO4反应产物。掺量占MgO的15~20%。造价高于MgCl2?6H2O。

(三).七水硫酸亚铁(FeSO4?7H2O)是防水剂,浅兰色单晶斜体,又名绿矾相对密度1.898(18℃时)易熔于水,有天然产水绿矾。掺量占总物量3%。

(四).丁苯胶乳(SBR含固量≥45%),是防水胶乳,掺量占总物量的6~12%。

(五).氯丁胶乳,又称氯丁二烯胶乳,在氧化镁物料中最稳定的防水胶乳掺量占6~12%,同时加入1%的(OHCH2CH2 ) 3N。

(六).硅溶胶、苯丙胶乳,丁晴胶乳等均可以作防水胶乳掺量占总物量的6~12%。

(七). SiO2类添加料占总物量的10~15%。

(八).尿醛树脂,三聚氰胺也是防水剂掺量占总物量的2~3%。

(九).磷酸(H3PO4)又称正磷酸是较好的固化防水剂掺量占总物量的4%。

(十).改性硅酸钠是较好的固化防水剂掺量占总物量的1~3%

三、镁氧水泥水化放热周期四个阶段

水化诱导前期是拌合投料成型10min内急剧放热形成第一次放热峰。

水化诱导期是投料60min内水化反应缓慢期。

水化加速期是投料240min内水化放热出现第二次放热峰。

水化减速稳定期是从第二次放热峰顶开始逐渐减速直至稳定,在14h水化反应终止。 通过四个阶段看出初凝1.5h,终凝4~5h,14h结束放热养护14天经检测合格20d可以出库安装(墙板或各种预制件),现浇镁氧混凝土6h可以拆模。

四、煅烧温度、时间是决定MgO活性、分散度的关键。

不管是菱镁矿,白云石矿等那一种为原料在煅烧中分解反应是吸热反应。由于分解出CO2和H2O,使MgO形成多孔隙晶体结构不致密产品活性好,分散度大(180m2/g)这里指的是在400℃~600℃时,这时的产品磨细后在常温下几分钟就水化完了。所以好的煅烧工艺应该把温度控制在400℃~600℃时即节省能源产品质量还好。当温度高于900℃时晶体致密化分散度小1300℃时只有3m2/g,在常温下水化95%的氧化镁需要75d。从格拉森晶格常数看出在400℃的时候MgO达到0.425nm, Mg(OH)达到0.424nm此时产品活性最好。也就是说400℃~600℃的轻烧温度为最佳温度,是轻烧粉说法的来源。煅烧时间愈长,晶体结构就愈致密,难以水化。

五、最佳配合比的几种要素:

(一).调合剂水溶液的比重(相对密度)

轻质镁氧混凝土配制时水溶液比重为1.35~1.50。

轻质墙板混凝土配制时水溶液比重为1.50~1.60。

轻质地板、隔热板、天棚混凝土配制时水溶液比重为1.80。

防火、防水镁氧装饰涂料配制时水溶液比重为1.9~2.0。

(二)轻质填料占氧化镁的重量比(%)

现浇轻质混凝土——35。

墙体板材 —— 25。

构件 —— 50。

涂料 —— 10。

(三).水溶液掺量占氧化镁的重量(倍)为1.60~2.0。

(四).氧化镁,氯化镁,水的相配比为:5~5.6 : 1~1.2 : 8~11。

轻质填料,氯化镁的相配比为 : 1~1.3 : 3~3.9。

刚玉(红宝石、蓝宝石))Corundum

红宝石、蓝宝石与钻石、祖母绿、金绿宝石一样,是最名贵的宝石品种之一。红、蓝宝石是宝石级的刚玉。刚玉主要化学成分为Al2O3,是具有三方对称的矿物晶体。

刚玉的英文为corundum,源自印度语kurand或kuruvinda,是矿物名称,当年指颜色不纯的刚玉;也有人认为来自泰米尔语kurundum和梵文kuruvinda,意为红宝石。

红宝石的英文ruby,源自拉丁语ruber,意为“红色”,我国古代曾译为“剌子”等。在梵语中,红宝石还有许多溢美的名字,如ratnaraj(宝石之王)、ratnanayaka(宝石之冠)等,说明当时印度民族对它十分珍爱。蓝宝石的英文为shire,来自拉丁化的希腊词shires,是蓝色的意思。中国古代也称蓝宝石为“瑟瑟”或“萨弗耶”,后者是英文的音译。

中文的红、蓝宝石名称是根据其颜色得来的。我国元代陶宗仪著的《辍耕录》中有红雅姑、青雅姑、黄雅姑、白雅姑之说,有人认为可能是指红、蓝、黄、白色刚玉宝石。雅姑是阿拉伯语宝石的音译。此外,我国古代文献中,还有“光珠”、“映红”、“映青”等词,指红色或蓝色的宝石,其中就包含刚玉质的红、蓝宝石。

红、蓝宝石质地坚硬,其硬度仅次于钻石。红宝石颜色鲜红、美艳,为红色宝石之冠,亦为有色宝石之首。蓝宝石颜色湛蓝,或如雨后天空一样清新辽阔,或像大海一样宽广深邃,也堪称蓝色宝石之王。因此红、蓝宝石历来深受人们的喜爱,作为饰品的历史很悠久。我国清朝官员的“顶戴”中,亲王至一品官用红宝石,而三品官用蓝宝石,客观地反映出它作为权贵、富有的象征以及人们对它的青睐。现今,世界各地都把红宝石作为7月生辰石和结婚40周年(红宝石婚)的纪念石,象征爱情、热情和品德高尚,人们又称其为“爱情之石”;蓝宝石为9月生辰石及结婚45周年(蓝宝石婚)的纪念石,象征忠诚和坚贞。

一、刚玉宝石的基本特征

矿物名称:刚玉

化学成分:理论化学式Al2O3,可含多种类质同象杂质或机械混入物。类质同象成分,尤其是替代Al的铁族元素,如Cr、Fe、Ti、V、Co等对宝石的颜色有重要影响,而类质同象分解出溶物——丝状体以及指纹状、羽状等气、液包裹体对刚玉宝石的净度、透明度影响较大。

晶系及结晶习性:刚玉属三方晶系,常呈柱状、桶状、腰鼓状、双锥状、板状晶形(图16-1-1),并可见聚片双晶。

光学性质:刚玉可呈现多种颜色,除红、蓝色外,还有黄、紫、橙、绿、褐、灰及黑、无色者。刚玉呈现彩色主要是由于Cr、Fe、Ti、V、Co、Ni等铁族色素离子取代Al所致。表16-1-1列出了部分彩色刚玉的着色离子及含量。某些蓝宝石还有变色效应,如泰国、缅甸和斯里兰卡的变色蓝宝石,日光下呈带灰色调的蓝-绿色或蓝紫色,白炽灯下为紫红或紫色,变色是由于含微量的Cr、Fe和Ti所致;而坦桑尼亚Umba河谷的变色蓝宝石(及维尔纳叶法合成的变色蓝宝石)则是含V导致变色效应的。

图16-1-1 刚玉的理想形态

上行为单晶;下行为双晶:左图双晶面∥( ),右图双晶面∥(0001)

刚玉为玻璃光泽或亚金刚光泽(抛光好时);透明至不透明;一轴晶负光性;折射率No:1.767~1.771,Ne:1.759~1.763;双折射率0.008;色散0.018。多色性中等到强,不同产地或同一产地不同品级的同一宝石品种,多色性色调、强度可能不同。一般红宝石为紫红—橙红,蓝宝石为紫蓝—绿蓝或蓝绿,**蓝宝石多色性弱。

刚玉宝石的发光性变化较大,既与刚玉中类质同象成分的种类、含量有关,也受固态包裹体(包括次生蚀变物)的种类、分布的影响。通常长波(366nm)、短波(254nm)紫外光下红宝石呈弱、中等到强的红或橙红色荧光,但短波下荧光往往更弱。蓝宝石一般不发光,个别产地(柬埔寨、澳大利亚、泰国等)的蓝宝石和绿色蓝宝石可见弱白垩状的蓝到绿色荧光,而斯里兰卡和美国蒙大拿产的含Cr蓝宝石也见带粉红色调的红色荧光。X光下也多呈无或中等到强的红或橙红色荧光。

表16-1-1 刚玉中所含杂质与颜色的关系

红、蓝宝石各品种由于Cr、Fe、V等色素离子含量不同,吸收光谱有明显差异。红宝石特征吸收线是692.8nm和694.2nm的双线(荧光线)及668nm和659.2nm的吸收线,附带吸收线有468.5nm(弱)和475nm与476.5nm的双线。某些紫红色者,尤其是泰国的,还有铁线,在451.5nm、460nm和470nm。蓝宝石特征吸收为451.5nm的铁线,热处理过的斯里兰卡蓝宝石无此铁线,澳大利亚、泰国、柬埔寨和尼日利亚的暗蓝色品种还可能附带460nm和470nm的弱线,合成蓝宝石无或仅有451.5nm弱线。富铁的**蓝宝石有特征的451.5nm铁线,而含铁少者(如斯里兰卡产的),铁线弱或无;热处理过的**蓝宝石,只见400nm~450nm的完全吸收带。焰熔法合成的**蓝宝石主要由Ni致色,在约455nm处仅见弱吸收线,但若含铬,也可见铬线。橙色蓝宝石,如坦桑尼亚Umba产的,可呈现Fe和Cr的吸收线;斯里兰卡产的则无Fe吸收线。焰熔法和Chatham助熔剂法合成的橙色蓝宝石是Ni、Cr联合致色,也无铁线。绿色蓝宝石由Fe或Fe和Ti联合致色,可见铁吸收线;焰熔法合成品由Co、V和Ni联合致色,无铁线,却有500nm、530nm、635nm和690nm处的吸收线。变色蓝宝石呈典型的红宝石型Cr和Fe吸收线谱;焰熔法合成品见473nm的钒吸收线,并有以580nm为中心的宽吸收带及690nm的荧光线。

刚玉宝石可见星光、猫眼及变色等特殊光学效应。六射星光较常见,偶尔可见十二射星光。星光的产生是由于宝石中有大小和数量合宜的出溶丝状体,通常是金红石,也有赤铁矿、钛铁矿,沿刚玉的{ }或{ }平行排列,并被切磨成弧面型,则在宝石顶面会呈现六射星光。如果丝状体既有沿{ }平行排列的,又有沿{ }平行排列的,则可显十二射星光。若丝状体只沿一个方向平行排列,垂直丝状体的延长方向就会显猫眼效应。刚玉质宝石的变色效应是由于含微量的Cr、Fe、Ti或V所致。

力学性质:刚玉摩氏硬度9;密度 。无解理,常有底面或菱面体方向的裂理,断口贝壳状或不平坦状。大多数裂理是由于出溶的杂质矿物,沿特定面网分布引起的,如美国不同矿山的刚玉表现为出溶的页片状一水软铝石沿菱面体面网方向分布引起菱面体方向裂开,而泰国Chanthaburi的黑星光蓝宝石则是出溶的赤铁矿分布于底面面网间引起底面裂开。当然也有由于双晶效应引起的裂开。

刚玉耐高温、难熔,熔点2000~2030℃,沸点2707±60℃。热导率0.0600~0.0834cal/cm℃s),高于尖晶石、石榴子石、黄玉等,比钻石低,约相当于钻石的1/35~1/70,因此热导仪也是鉴定刚玉宝石的有效工具之一。

刚玉宝石具有较高的化学稳定性,耐普通酸、碱侵蚀,但微溶于煮沸的硝酸或热至300℃的磷酸;易溶于800~1000℃的硼砂或400~600℃的亚硫酸氢钾。

显微特征:主要指其中复杂的包裹体,包括矿物晶体、色带、气液包裹体、微裂纹等。红、蓝宝石中常见的矿物包体达十几种,如金红石、锆石、刚玉、尖晶石、石榴子石、云母、钛铁矿、赤铁矿、方解石、磷灰石等;此外,还常见色带或不规则色斑以及指纹状、羽状气液包裹体。红宝石微裂纹也常见,正如俗话所说“十红九裂”。不同产地的红、蓝宝石往往会有自己特有的包裹体或包裹体组合,对于鉴定红、蓝宝石,乃至区分产地具有重要意义,但应用时也要谨慎,注意自然界情况的复杂性。合成刚玉宝石具有不同于天然宝石的包裹体特征,如弯曲的色带(焰熔法、提拉法)、籽晶、铂金或铜合金片、残余熔剂、气泡等,可以作为与天然宝石区分的依据。

缅甸红宝石最典型特征包体是金红石丝状体,它们和其他尖晶石、刚玉、磷灰石、锆石等自形或浑圆的晶粒一起出现,或共同构成的密集云雾并组成独特的图案,还常见六角形的色带和“糖浆”状的旋卷图案,聚片双晶发育,可见平直排列的百叶窗式双晶纹,极少见指纹状和羽状包裹体。缅甸蓝宝石也含密集云雾状金红石丝状体,可显星光效应,有时与赤铁矿、钛铁矿等丝状体分布方向成30°交角,可显十二射星光,但其他矿物包体少,富含次生液态包裹体,色带不发育。

斯里兰卡红、蓝宝石中,金红石细长、稀疏,无云雾状特征。经热处理后会全消失。还有指纹状、羽状、蛛网状、似筛网状等液态包体及由高突起的两相包裹体并呈主晶的双锥状形态的负晶。客晶可有锆石、云母、磷灰石。最重要的固态包裹体是布满细小张裂隙晕圈的锆石。绝大多数斯里兰卡宝石颜色不均匀,可在较大范围局部出现无色区。其蓝色宝石的核部常无色,蓝色集中在靠近晶面部位(有时仅集中于一薄层)。

泰国和柬埔寨产的一些红宝石来自两国边界的同—矿床,聚片双晶发育,具平直的色带和生长纹,无金红石丝状体,其他矿物包体也少,常见指纹状包体。这些指纹状包体可被白色针状一水软铝石切过,并分割出一些旗帜状图案。一些液态包裹体围绕在负晶或不透明包裹体周围,形成“土星光环”或称“圆盘”。这种“土星”指纹体在热处理后会因晶体熔成玻璃质,并将一些气体冻结在被玻璃充填的表面上,被误认成原生的熔融包体。“土星”中客晶可以是铁铝榴石、磷灰石、磁黄铁矿、斜长石、橄榄石或辉石。

泰国蓝宝石肉眼可见参差不齐的色带,矿物包体集中在蓝带中,可反射乳状光,特征客晶有锆石、长石和磁黄铁矿。可见相对较粗的指纹状和羽状包裹体,形成弯曲、折叠的图案。

柬埔寨的拜林蓝宝石色纯、均匀,特征客晶是烧绿石和斜长石;小液滴及逗号状的包裹体沿主晶的生长构造排列;在指纹体周围有带红色或褐斑的液体。

克什米尔蓝宝石丝绒般的华贵感觉是由于内部很细的沟或空管组成的雾状包裹体反光。其特征包体还有电气石、熔蚀状长石、锆石、沥青铀矿、色带和尘状微粒。

澳大利亚蓝宝石大多呈深蓝—黑蓝色,含尘状熔融包裹体、指纹状包裹体、铌铁矿、辉石、锆石等晶体并有明显的色带是其重要特征。包裹物中有的像彗星的尾巴。

美国蒙大拿蓝宝石颜色漂亮,尺寸小的无色带,特征矿物包体有石榴子石、尖晶石。

中国山东蓝宝石与澳大利亚蓝宝石类似,包裹体特征是含多种类型共存的熔融包裹体及锆石、长石、云母、铌钽铁矿等矿物。

泰国、澳大利亚及我国山东产的蓝宝石中也可有缅甸蓝宝石中的两类丝状体。

其他色彩的蓝宝石中也有与同产地的红或蓝宝石中类似的包裹体特征。

二、刚玉宝石的类型

刚玉质宝石分成红宝石和蓝宝石两大类。

(1)红宝石:国际有色宝石协会(ICA)规定以红色为主色的刚玉质宝石称为红宝石,包括鸽血红、紫红、橙红、褐红、粉红色及含其他色调成分的红色者,都是红宝石。命名时就称红宝石,不必加形容词。色调深浅、纯度如何属于具体描述的范围。

(2)蓝宝石:除红宝石之外的所有刚玉质宝石均属蓝宝石。蓝色之外的蓝宝石,命名时要加颜色前缀,如**蓝宝石、紫色蓝宝石、橙色蓝宝石等。

具有特殊光学效应,如星光、猫眼、变色效应的红、蓝宝石,命名时也用前缀或后缀限定,如星光红宝石、星光蓝宝石、变色蓝宝石、红宝石猫眼。

刚玉质宝石的品种划分上,颜色是第一层次,特殊光学效应是第二层次。一般分到第二层次即可。命名时宜简单,描述则应具体。一些红、蓝宝石在主色调中出现的其他色调变化,可在描述中具体阐述,如黄绿色、蓝紫色等。

三、刚玉宝石的评价

刚玉属有色宝石,其评价从以下几个方面来考虑,有人将它归纳为“4C”加“1T(透明度)”。

(1)颜色:红宝石首推鸽血红,其次是玫瑰红、粉红;蓝宝石首推矢车菊蓝,其次是深蓝、浅蓝,然后是艳丽的绿色、**;色调不能过深,也不能过浅,颜色越纯、越饱和越好。

(2)透明度:包括净度。包裹体越少、越小,透明度越高,色彩越纯,越明亮或越鲜艳越好。刚玉宝石的包裹体多于钻石,净度分级只在肉眼下对比包裹体大小、多少和分布即可。

(3)切工:除顶底比例,台面大小要求比钻石切工放宽之外,不漏光又有完美对称性、规整性和光洁性等要求与钻石是一致的。闪光程度和对称程度与原石质量、形态等有关。红、蓝宝石常有随形切工的成品。为保克拉重量,力求闪光好就成。评价时,要考虑每个产地宝石独特的瑰丽性和相应的稀有程度,不应把粒重放在首位。

(4)重量:其他条件相同时,红、蓝宝石重量越大,价值越高。总的说来,红宝石比蓝宝石稀少,需求也大,不小于0.3ct就可以单独做戒面,超过5ct的罕见,而蓝宝石则要0.5ct以上。

具星光效应的红、蓝宝石主要看星光是否清晰完美。优质的应星光明显、星线交点居中、均匀、无断缺的星线,其次考虑颜色、透明度等。

四、合成刚玉宝石、优化处理刚玉宝石及刚玉宝石的仿制品

目前,合成红、蓝宝石的方法较多,除了焰熔法,还有提拉法(丘赫拉斯基Czochraski法)、熔区法、水热法和助熔剂法。合成的红、蓝宝石品质优良,尤其是助熔剂法和水热法,合成条件最接近于自然界的生长条件,因此,用这些方法合成的各种宝石晶体在外部特征及所含包裹体等都与天然宝石晶体相似,几乎可以以乱真。这些方法的合成品与天然宝石的区分即使在专业鉴定人员面前也是不易解决的难题。

目前红、蓝宝石改善方法有:加热、扩散、辐照、染色、充填、覆膜等。

热处理,或称焙烧处理,属优化方法。在远低于刚玉熔点的温度下对其加热,以改变红、蓝宝石的颜色(去除杂色、邪色,提高、固化优质颜色)、增加其净度(去除瑕疵、提高透明度)。

95%以上的红、蓝宝石都经过了热处理。在热处理时,若单纯加热,往往需要在较高的温度下焙烧才能获得颜色的改善,且有时颜色带灰色调。目前一般是在一定的氧化或还原气氛下加热,达到需要的效果。缅甸、越南的带粉红、紫或蓝绿杂色调的红宝石焙烧可得到较纯正的鲜红色并产生明显的星彩。中国山东昌乐蓝宝石,晶体大,但色偏黑、偏灰绿,且透明度较差,热处理可以得到颜色较好的蓝色蓝宝石,但达到纯正的完全不带灰色调的处理效果还需要改进工艺技术。帕德马蓝宝石(红紫色与粉橙色)也可以经过热处理得到。斯里兰卡的“久达”刚玉(半透明乳白色刚玉)经加热可得到蓝色蓝宝石。

扩散(渗透或称表面渗透):一种化学处理方法。将无色或浅色蓝宝石埋在粉末状着色剂中,在坩埚内加热以改善宝石表层的颜色。其价格是天然品的1/5~1/10。刻面成品可以通过浸没法观察棱(深)面(浅)的颜色差异与天然品区别。

辐照:用γ射线、X射线,高能电子、中子、质子等高能粒子照射宝石,从而改变宝石颜色的处理方法。有时辐射与加热配合进行。辐照处理的宝石普遍存在两个问题:一是颜色不太稳定,容易褪掉;二是经放射性辐照后,会残留对人体有害的放射性,要放置一段时间(3个月至半年),待残余放射性剂量衰减到人体可承受的程度,方可投放市场。

染色:将染色剂和宝石一起在水中煮,以加深或改变宝石颜色的处理方法。该法历史悠久。红宝石常用此法处理。因为红宝石裂多,易于染色。斯里兰卡人将一种浅**蓝宝石与一种树皮、树枝一起在水中煮,可使该宝石变成金**,然后加蜡形成保护层。染色宝石的特点是:只在裂隙中颜色较深、浓、而鲜艳,远离裂隙则会出现未染色时宝石的原色。有经验的鉴定人员在放大镜下极易识别此特征。

充填:是将石蜡、油、合成树脂等折光率与宝石相近的物质注入裂隙、裂纹明显的宝石中,以提高宝石净度、消除因裂隙造成的光线折射不均等现象的处理方法。并往往同时注入染料以改色。主要用于裂隙多的红宝石。易于鉴别。

覆膜:在宝石表面涂一层有色物质以改变宝石表面颜色和表面性质的处理方法。红、蓝宝石用的不多。我国市场上曾出现过无色星彩蓝宝石外涂红色塑料冒充星彩红宝石的个例。

诱发或改变包裹体:应用电蚀、热处理等方法改变宝石包裹体,以改善宝石颜色的方法,也可归之于热处理。如我国山东蓝宝石的热处理就是使原黑色包体经氧化而达到宝石退色的。维尔纳叶法合成的红、蓝宝石经热处理产生裂隙,当裂隙达到宝石表面时,可用此法在该裂隙中产生“指纹”状包裹体,以冒天然红、蓝宝石(二度处理焰熔红、蓝宝石)。

上述优化处理方法常用的是加热和扩散,其他应用较局限。而诱发或改变包裹体方法的产品容易达到以乱真(以合成宝石冒充天然宝石)的目的,正逐步得到推广,其产品在国际、中国香港、台湾及中国大陆珠宝市场上都可以见到。消费者购买时应当心。红、蓝宝石的仿制品主要是玻璃和合成立方氧化锆,它们与红、蓝宝石在偏光性、折射率及密度等物理性质上区别明显,容易区分。

五、刚玉宝石的鉴定

1.与外观相似的其他品种宝石的区别

原石可以借助刚玉的晶形或结晶习性、硬度、裂理或断口特征与其他种类宝石区分;对于那些没有任何结晶习性保留的刚玉砂、砾石,还可以通过密度、导热性来鉴别。对于成品戒面或琢件,主要靠光学常数,如折光率、多色性和密度来鉴别。与红宝石颜色易混的有红色尖晶石、石榴子石、锆石、电气石、绿柱石、玻璃等,与蓝宝石颜色相似的有蓝色尖晶石、电气石、坦桑(黝帘)石、堇青石、黄玉、绿柱石、玻璃等,还有合成的钇铝榴石( Y)、立方氧化锆(CZ)、稀土玻璃等,这些宝石的光学和力学性质常数都列于附表2,区分它们基本可以通过其间不同的物性参数来实现。对于个别物性参数与刚玉相似或部分重叠的品种,如某些红色石榴子石与刚玉折射率和密度相近,可用偏光性、多色性、荧光和导热性来区分。总之,对于刚玉质宝石与其他种类宝石的区别,综合使用其物理性质,一般总能筛选出某项或某几项可靠又简便易行的观察测试方法。

2.天然与合成刚玉质宝石的区别

刚玉质宝石的合成已有多种方法。由于天然与合成品都是刚玉,物理性质相同,所以,区分天然石与合成品主要靠包裹体和微(痕)量元素等特征。放大观察包裹体中客晶的种类及组合以及生长色带或条纹的特征是极为重要的。表16-1-2列出了天然刚玉宝石和主要合成品的区别特征。

表16-1-2 天然刚玉宝石和主要合成品的区别特征

3.天然刚玉质宝石与处理品的区别

用于红、蓝宝石改善的方法主要是热处理、扩散处理和染色。单纯热处理过的宝石可以作为天然品出售而不必特殊说明,借包裹体的变化可以判别热处理迹象,并在净度评价时参考。扩散处理者应在出售时声明。鉴别扩散处理品主要利用浸没法,即将待鉴定宝石浸没水(或其他液体)中,观察棱和刻面上的颜色差异。若棱比刻面的颜色深,则说明其极可能是扩散处理的。这种浸没法也用于区别天然石和合成品的生长层纹特征。染色处理的比较好鉴定,可以利用放大观察颜色是否主要沿裂隙分布。

六、刚玉宝石矿床类型、产状、产地简介

红、蓝宝石矿床成因可以分为岩浆型、伟晶岩型、变质型和砂矿几种类型。

1.岩浆型

主要是产于碱性玄武岩等基性火山岩中的红、蓝宝石。刚玉在地壳深部结晶,然后被玄武岩浆喷发带到地表。世界各地蓝宝石大多是这种成因,如我国产的蓝宝石(包括山东、海南、福建等地的矿床或矿点)、澳大利亚新南威尔士州的蓝宝石(其产量占世界蓝宝石产量的50%以上);有些产地还兼产红宝石,如我国海南、泰国、柬埔寨、老挝、越南等。

美国蒙大拿州约戈谷蓝宝石矿床是惟一的碱性-基性煌斑岩型矿床。蓝宝石晶体表面往往有一层细粒镁铁尖晶石,表明刚玉是在岩浆结晶早期从岩浆中晶出,随岩浆迅速上涌,Al2O3与镁、铁质一起形成尖晶石浮生于刚玉上。

澳大利亚哈茨山红宝石矿床是惟一的斜长杂岩体中的岩浆-变质过渡型矿床。在地壳深部形成的红宝石被斜长岩带到浅部呈斑晶或巨晶分散于岩体中;岩体侵入就位后受褶皱、变形,矿物再结晶时,红宝石也再结晶、长大,从而形成所见的颜色极好的板状晶体。

2.伟晶岩型

坦桑尼亚翁巴塔尔红、蓝宝石矿床是典型的伟晶岩型矿床。刚玉产在奥长伟晶岩中,以橙红色的著名,还有天蓝—绿、天蓝—灰、褐黄、褐色者。

3.变质岩型

又可以分为区域变质型、接触交代型和热液蚀变型。这种成因类型在刚玉宝石矿床中曾是最重要的,产量最大,现在产量已退居岩浆型之后。

(1)区域变质型:最著名的缅甸抹谷红(蓝)宝石矿床即属这种成因类型。它产于邻近花岗岩的大理岩中。过去曾被认为是矽卡岩型矿床,后来研究表明,红、蓝宝石是随着石灰岩变质成大理岩时,由石灰岩中的Al2O3富集结晶而成,与后来的花岗质岩浆活动无成因联系。抹谷红宝石自古以鸽血红品种著称,20世纪30年代又以星光蓝、红宝石闻名,一般是1~10mm的短柱,有时可达5cm。同此类型的还有阿富汗哲格达列克红宝石矿床;类似此类型的有俄罗斯帕米尔地区及巴基斯坦罕萨红宝石矿床。

斯里兰卡、美国及我国新疆还有产于片麻岩、片岩中的区域变质型红、蓝宝石矿床。我国新疆阿克陶县的红、蓝宝石分布在矽线黑云斜长片麻岩或变粒岩中,刚玉被包裹于矽线石等富铝贫硅矿物中,颜色以紫蓝色、灰色为主,少数呈淡紫、紫红等色。

(2)接触交代型:斯里兰卡康迪山等蓝宝石矿床属此类型。矿体位于正长岩与大理岩的内接触带,即正长岩体中。晶体为双锥、桶、柱状,蓝色、天蓝绿色等(无黑色、褐色者),是世界上优质蓝宝石及彩色蓝宝石(帕德马刚玉)的主要产区。

著名的克什米尔蓝宝石矿也属此类型。矿床产于花岗伟晶岩与白云岩化灰岩的内接触带(蓝宝石产于伟晶岩的长石中)或双交代的阳起石-透闪石带或伟晶岩与云母片麻岩接触带,刚玉被被认为是气成热液与伟晶岩等反应时,交代长石而形成。晶体长达几厘米,产天蓝、蓝、紫、绿、橙、黄等色蓝宝石。其中蓝中略带紫的“矢车菊”蓝宝石最负盛名,是克什米尔蓝宝石的代表。某些晶体核部无色,仅在靠近晶体表面才呈蓝色。

(3)热液蚀变型:坦桑尼亚坦噶城和俄罗斯乌拉尔地区的红、蓝宝石矿床属此类型。矿床产于蚀变超基性岩体内。刚玉形成在云母和斜长石组成的岩脉中,为热液蚀变产物。类似的还有美国北卡罗来纳州“刚玉山”等刚玉岩脉和非洲南非等国以及印度和我国青海、安徽的红、蓝宝石矿床,刚玉产于蚀变超基性岩体或其边缘接触带上。我国青海的是在刚玉云母斜长岩扁豆体中,刚玉多为深玫瑰红色,有时呈蓝色,或晶体内部为蓝宝石,外部为红宝石,半透明;安徽的则产于刚玉黑云斜长岩脉或扁豆体中,晶体为浅紫—玫瑰红色。

4.砂矿

由于刚玉有相当大的稳定性,因而常常富集于砂矿中。砂矿是优质红、蓝宝石的主要来源,经济价值比原生矿重要得多。上述各种成因类型原生矿都有相应的次生砂矿。砂矿有残积、坡积和冲积等类型。

迄今,进入国际市场的红、蓝宝石来自以下国家:缅甸、泰国、柬埔寨、克什米尔、巴基斯坦、斯里兰卡、澳大利亚、美国、纳米比亚(不透明的红宝石)、哥伦比亚(蓝宝石和紫罗兰色蓝宝石)、日本(透明晶体)、苏格兰(蓝宝石)、坦桑尼亚(红宝石和装饰石)、津巴布韦(各色蓝宝石和黑色星光蓝宝石)、马拉维(蓝宝石)、肯尼亚(带粉色红宝石)、阿富汗、印度(红宝石、星光红宝石)、巴西(蓝宝石)、越南和中国山东(蓝宝石)。

硫化钠形成过程

硫化钠,又称臭碱、臭苏打、硫化碱,外文名 sodium sulfide为无机化合物,呈无色结晶粉末,吸潮性强,易溶于水,水溶液呈强碱性。触及皮肤和毛发时会造成灼伤,故硫化钠俗称硫化碱。露置在空气中时,硫化钠会放出有臭鸡蛋气味的有毒硫化氢气体。工业硫化钠因含有杂质其色泽呈粉红色、棕红色、土**。

硫化钠化学分子式 Na2S 分子量 78.045 CAS登录号 1313-82-2 EINECS登录号 215-211-5 熔 点 950 ℃ 水溶性 186 g/L (20℃) 密 度 1.86 g/cm? 外 观 无色结晶粉末 安全性描述 S26-S45-S61 危险性符号 R31;R34;R50 危险性描述 腐蚀性 UN危险货物编号 1849

生产简史

中国硫化钠起源于20世纪30年代,最早由辽宁大连一家化工厂开始小规模的生产,进入20世纪80年代至90年代中期,随着国际化工工业的蓬勃发展,中国硫化钠产业发生了根本性转变,生产厂家和规模剧增,发展迅猛。由山西运城为中心的硫化钠生产区域快速扩展到了云南、新疆、内蒙古、甘肃、青海、宁夏、陕西等10几个省市和地区。全国年生产能力由80年代末的42万吨猛增到90年代中期的64万吨。其产量发展速度最快的是中国西北的内蒙古、甘肃、新疆地区。而内蒙古的生产能力已达20万吨,一跃成为中国最大的硫化钠产品生产基地。

制备方法

1、煤粉还原法,将芒硝与煤粉按100:(21~22.5)(重量比)配比混合于800~1100℃高温下煅烧还原,生成物经冷却后用稀碱液热溶成液体,静置澄清后,把上部浓碱液进行浓缩,即得固体硫化钠。经中转槽、制片(或造粒)制得片(或粒)状硫化钠产品

化学反应方程式:Na2SO4+2C→Na2S+2CO2

2、吸收法,用380~420 g/L氢氧化钠溶液吸收含H2S>85%硫化氢废气,所得产物经蒸发浓缩,制得硫化钠成品。

化学反应方程式:H2S+2NaOH→Na2S+2H2O

3、硫化钡法,用硫酸钠与硫化钡进行复分解反应制沉淀硫酸钡时可以副产得到硫化钠。其

化学反应方程式:BaS+Na2SO4→Na2S+BaSO4↓

4、气体还原法,在有铁催化剂存在下,将氢气(或一氧化碳、发生炉煤气、甲烷气)在沸腾炉中与硫酸钠进行反应,可制得优质无水颗粒状硫化钠(含Na2S 95%~%)。

化学反应方程式:

Na2SO4+4CO→Na2S+4CO2

Na2SO4+4H2→Na2S+4H2O

5、生产方法,精制法以生产沉淀硫酸钡过程中副产的浓度为4%左右的硫化钠溶液为原料,用泵打入双效蒸发器蒸浓至23%后,进人搅拌罐脱铁、除碳处理后,用泵打入蒸发器(用纯镍材制造)蒸发碱液达到浓度,送到滚筒水内冷却式制片机制成后,经筛选、包装而得成品。

应用领域

1、染料工业中用于生产硫化染料,是硫化青和硫化蓝的原料。印染工业用作溶解硫化染料的助染剂。制革工业中用于水解使生皮脱毛,还用以配制多硫化钠以加速干皮浸水助软。造纸工业用作纸张的蒸煮剂。纺织工业用于人造纤维脱硝和硝化物的还原,以及棉织物染色的媒染剂。制药工业用于生产非那西丁等解热药。此外还用于制硫代硫酸钠、硫氢化钠、多硫化钠等。

2、在铝及合金碱性蚀刻溶液中添加适量的硫化钠可明显改善蚀刻表面质量,同时也可用于碱性蚀刻液中锌等碱溶性重金属杂质的去除。

3、硫化钠还可用于直接电镀中导电层的处理,通过硫化钠与钯反应生成胶体硫化钯来达到在非金属表面形成良好导电层的目的。

4、用作缓蚀剂。也是硫代硫酸钠、多硫化钠、硫化染料等的原料。

5、用于制造硫化染料,皮革脱毛剂,金属冶炼,照相,人造丝脱硝等。

有色金属工业“十二五”发展规划的主要任务

1.调整优化产业布局

统筹规划,坚持上大与压小相结合、新增产能与淘汰落后相结合,优化有色金属生产力布局。以满足内需为主,严格控制、能源、环境容量不具备条件地区的有色金属冶炼产能。积极引导能源短缺地区电解铝及镁冶炼产能向能源丰富的西部地区有序转移。逐步推进部分城市有色企业转型或环保搬迁。在沿海地区,利用进口原料有序布局建设若干铜、镍基地。选择条件合适的区域,依托拆解园区,充分利用国内外废杂铜、铝建设若干规模化的再生金属基地。提升企业国际化经营水平,鼓励在境外建设氧化铝、电解铝、铜、铅、锌、镍等产业园区。

按照循环经济发展模式,支持建设若干基础雄厚、产业链完整、特色鲜明、高效利用、环境友好的有色金属新型工业化示范基地。支持建设优势互补、合作双赢的东、中、西部产业转移合作示范区。

2.大力发展精深加工产品

以发展精深加工、提升品种质量为重点,以轻质、高强、大规格、耐高温、耐腐蚀、低成本为发展方向,大力发展铝、镁、钛等高强轻合金材料,以提高性能、降低成本为方向,加快发展高性能铜合金材料、铅锌镍各种合金及其他功能材料,满足战略性新兴产业以及国家重大工程的需求,形成若干布局合理、特色鲜明、产业聚集的有色金属精深加工产业生产基地。

铝:开展航空用高抗损伤容限合金、高强度铝合金品种开发,以及铝合金薄板、厚板、型材和锻件的工程化技术开发,满足航空及国防科技工业对高性能铝合金材料的要求。开发具有自主知识产权的轨道交通用大型铝合金型材、具有较好成形性能的汽车车身用6016类及6022类合金,以及液化天然气船(LNG)船用5083-O态合金板材生产技术。大力发展高纯高压电子铝箔,满足特高压铝电解电容器的需求。

镁:以开发生产汽车、高速列车及轨道交通车辆、电子信息、国防科技工业、电动工具等领域应用的大截面型材、板材、大型压铸件为重点,用产学研用相结合,通过增强创新能力及示范工程建设,加快高性能、低成本镁合金及深加工技术及产品研发,实现重大关键共性技术突破,建设以镁合金铸件、型材、锻件、板材为主体,终端产品相配套的完整产业化体系。

钛:针对国家航空航天等重大工程需求,着力发展大规格棒材和锻件、紧固件用丝材、宽幅板材和钛—钢复合板、大直径管材、大型铸件和粉末冶金件。积极发展钛带材、焊接钛管及挤压型材等,并进一步延伸产业链,提高产品附加值。

其他有色金属:重点发展镍及镍合金板带材、高性能锌合金,高强高导引线框架材料、水箱铜带、变截面带材、高精度异型铜合金材、超细毛细管、高速列车及铁路电气化高性能专用铜材、5ppm(百万分之一)以下高纯无氧铜、小于18微米压延铜箔等高性能铜合金,锡锑精细深加工产品、高性能稀有金属材料等。

专栏4:精深加工产品发展重点 铝:高性能铝合金半固态坯料及零件,涡轮发动机压叶轮材料,汽车铝合金板,航空航天用2系、7系列铝合金及材料,铝锂合金,深冷设备用铝合金板材,大型、超大型及微型铝合金工业型材,可焊铝合金薄板,超高纯铝,高压阳极铝箔等。 镁:耐热铸造镁合金,低成本挤压型材,高性能镁合金挤压型材,大截面镁合金中空型材,宽幅镁合金板材,镁合金铸轧板材,镁合金热轧板材,镁合金薄带材,镁合金精轧薄板材,镁合金锻造汽车轮毂,镁合金锻件等。 钛:优质宽幅冷轧纯钛板材,高性能宽幅钛及钛合金厚板,钛合金型材,钛及钛合金带材,大规格宽厚钛合金板材,高精度、宽幅钛合金薄板材,大规格钛合金棒材及特征锻件,紧固件用丝材、大型钛铸锭及锻件,新型钛合金结构材料,专用钛合金材料,钛及钛合金模锻件,钛基多孔材料等。 铜:铜合金引线框架,高强高导新型铜合金接触导线,无铅新型环保铜合金,高性能无铍弹性铜合金,高性能耐蚀镍铜合金,铜包铝,低松比雾化铜粉,高纯铜合金溅射靶材,压延铜箔等。 其他有色金属:镍基高温合金、镍基合金无缝管,镍基金属多孔材料,高性能球形氢氧化镍,高性能锌合金,无铅锡焊料、锡化合物,先进锑阻燃材料,纳米晶及特粗晶粒等高性能硬质合金、ITO靶材、大规格钨钼靶材、核级锆材等高性能稀有金属材料等。 3.积极推进企业重组

按引导、企业为主体、市场化运作的原则,结合优化布局,大力支持优势大型骨干企业开展跨地区、跨所有制兼并重组,提高产业集中度。积极推进上下游企业联合重组,提高产业竞争力。充分发挥大型企业集团的带动作用,形成若干家具有核心竞争力和国际影响力的企业集团。

4.发展有色金属生产服务业

大力支持科技实力雄厚的有色金属企业从生产型制造向服务型制造转变,鼓励有色金属企业开展技术研发、工业设计、信息咨询、现代物流等生产。建立和完善有色金属的电子商务、期货交易等市场手段。支持发展工程咨询、设计、装备集成、安装调试、运营服务一体化的工程承包服务。鼓励发展有色金属工业检测认证、科技成果推广等中介服务,扶持壮大节能服务产业。 1.加快基地建设

以加快境外铜、铝、铅、锌、镍、钛等原料供应基地建设为重点,积极推动境外勘探,在丰富的国家和地区,依托具有国际化经营能力的骨干企业,建立与所在国利益共享的对外开发机制,加快境外开发项目建设,形成一批境外矿产基地。进一步加强国内重点成矿地带的普查与勘探,增加储量,提高查明储量利用率,积极开展现有矿山深部边部找矿,延长矿山服务年限。以云南、新疆、甘肃、青海、西藏、内蒙古、黑龙江等省(区)有色金属成矿带开发为重点,加快建设西部矿产基地。在广西、贵州、山西适度发展具有保障的氧化铝产能。

2.大力发展循环经济

鼓励低品位矿、共伴生矿、难选冶矿、尾矿和熔炼渣等开发利用。促进铜、铅、锌等冶炼企业原料中各种有价元素的回收,冶炼渣综合利用,以及冶炼余热利用。建立完善铜、铝再生利用体系,规范回收、拆解,建设一批规模化再生利用示范工程。完善废旧铅酸电池回收利用体系,鼓励将废旧铅酸电池回收利用纳入矿铅生产体系,最大限度地降低重金属污染。支持改扩建形成一批锌、钴、镍、锡、锑、锗、铟、贵金属等回收利用及冶炼废渣综合利用示范工程。依托内蒙古等高铝煤炭,有序推进高铝粉煤灰开发利用,大力推进《赤泥综合利用指导意见》的组织实施工作。 1.增强创新能力

围绕有色金属工业发展重点和难点,在矿产勘查、节能减排、提高利用率、先进材料制备等领域,加快建立以企业为主体、市场为导向、产学研相结合的技术创新体系,大力培育企业的应用技术研发与创新能力,创新投入机制,强化共性技术研究平台建设,推动企业、科研院所和高校共同开展前沿共性技术攻关,着力突破核心关键技术和共性基础技术,充分发挥科技对产业升级的支撑作用,提高产业核心竞争能力。

专栏5:科技开发重点 重点开发技术。氧气底吹及侧吹连续炼铜技术、闪速炉短流程一步炼铜技术、高温高浓度溶出浆液高效分离技术、底吹电热熔融还原炼铅技术、闪速炼铅新工艺、红土镍矿绿色湿法冶金技术、镍锍连续吹炼技术、新法炼钛技术、等温熔炼炉关键技术及配套设备、赤泥分选用超导磁选机和赤泥综合利用技术等。 重大节能技术。氧化铝节能技术、铝电解节能技术、多热源内热式电热法生产镁技术与装备、低品位红土镍矿生产镍铁节能技术、海绵钛节能降耗技术、镁电解多极槽技术、大型充气机械搅拌式浮选机、烟气制酸低温位热回收技术等。 精深加工技术。高洁净、高均匀性合金冶炼和凝固技术,中厚板固溶及预拉伸技术,高性能铸造镁合金及变形镁合金制备及深加工技术,镁合金腐蚀控制及防护技术,18微米及以下压延铜箔压延及表面处理工艺技术, 高质量引线框架材料合金制备及加工工艺技术,钛铝合金及加工成型技术,钛合金模锻件锻压、型材挤压、大型铸件、异型管棒丝材成型技术。 重点前沿技术。有色金属矿产潜力快速评估与勘查基地优选、地下金属矿山智能化矿关键技术与装备、生物提取金属、有害元素的无害化处理及化利用、金属复合材料及难加工金属电塑性加工技术、先进材料制备技术、低碳技术等。 2.加强技术改造

支持有色金属企业运用先进适用技术和高新技术,以质量品种、节能减排、环境保护、安全生产、两化融合等为重点,对现有企业生产工艺及装备进行升级改造,加快淘汰落后,实现清洁、安全生产,提高企业生产自动化、管理数字化水平。

专栏6:技术改造重点 选。推广电动液压矿凿岩设备如掘进台车和深孔凿岩台车、低矮式破碎机等大型高效节能自动化选装备以及新型高效药剂,实现选装备机械化、自动化和大型化,加强矿山现场监测,提高矿山管理信息化水平。 铝冶炼。重点推广新型结构铝电解槽、低温低电压铝电解等高效节能技术;低品位铝土矿高效节能生产氧化铝技术、氧化铝生产过程余热回收利用技术。 铜冶炼。推广氧气底吹炉炼铜等技术。 铅冶炼。推广富氧底吹熔炼、液态铅渣直接还原炼铅工艺等先进技术,加快对落后熔炼、鼓风炉还原等进行技术升级改造。 镁冶炼。推广套筒竖窑及蓄热式竖式还原炉技术。 钛冶炼。重点推广植物油除钒技术、铝粉除钒技术、新型节能还蒸炉、多极槽镁电解等技术。 铜铝加工。推广铜铝加工短流程生产技术,积极开发引进大断面、复杂截面铝合金型材制造技术、大型高性能铝合金预拉伸板制造技术及装备,高强高导新型铜合金制造技术及装备。 稀有金属。推广微量杂质低成本高效分离技术、高纯金属制备新技术、高功率电子束熔炼炉及难熔金属的提纯技术及装备等,生产高档硬质合金、高纯化合物、高纯金属细粉、大卷重丝材、大规格高性能板、棒材及特种钨、钼制品等精深加工产品。 3.推进两化深度融合

认真总结和推广行业先进企业的信息化经验,建立和完善有色金属工业信息化标准规范工作体系。通过技术改造,提高企业生产自动化水平。鼓励企业建设信息化集成管理系统,推广使用企业(ERP)和生产制造执行系统(MES),提高管控效率。

4.加强标准化建设

适应有色金属工业加快产品结构调整、发展新材料的需要,建立、修订、完善技术和产品标准。进一步做好能耗、安全生产、清洁生产标准的制订。制订再生有色金属能源消耗标准和环保标准。加大参与国际标准化工作的力度,实现国际国内标准接轨和双向转化。 以重有色金属污染防治为重点,按照《重金属污染综合防治“十二五”规划》和《重点区域大气污染联防联控“十二五”规划》要求,遵循源头预防、过程阻断、清洁生产、末端治理的全过程综合防控原则,加快重点区域重金属污染防治。

1.限制重金属污染排放项目

严格准入条件,优化产业布局,禁止在在自然保护区、饮用水水源保护区等需要特殊保护的地区,大中城市及其近郊,居民集中区等对环境条件要求高的区域内新建、改建、扩建增加重金属污染物排放的项目。到“十二五”末,仅保留少数符合环保排放要求的原生汞冶炼企业,取缔其他原生汞冶炼企业。汞触媒回收企业应配套有汞蒸汽回收装置,严格控制其他地区新建的汞触媒回收企业。

2.积极推行清洁生产

大力推广安全高效、能耗物耗低、环保达标、综合利用效果好的先进生产工艺,强化从源头防控重金属污染。依法实施强制性清洁生产审核。加强重金属污染治理设施建设,鼓励企业在达标排放的基础上进行深度处理。实施区域综合整治,以湘江流域为重点,推进污染产业密集、历史遗留污染问题突出、风险隐患较大的重金属污染区域综合整治。

3.强化监管能力建设

加强重金属污染环境监测能力,推行污染源自动监控,重金属废气、废水排放企业要安装相应的重金属污染物在线监控装置,并与环保部门联网。 1.控制高耗能产业过快增长

提高节能环保市场准入门槛,严把土地、信贷两个闸门,严格控制新建高耗能、高污染项目。建立高耗能产业新上项目与地方节能减排指标完成进度挂钩、与淘汰落后产能相结合的机制。继续运用提高税、调整出口退税、将部分产品列入加工贸易禁止类目录等措施,控制高耗能、高污染产品出口。加大差别电价实施力度,提高高耗能产品差别电价标准。

2.加快淘汰落后产能

依靠法律、经济和必要的行政手段以及技术进步,按期淘汰落后产能。

专栏7:落后产能淘汰目录 铜:鼓风炉、电炉、反射炉炼铜工艺及设备(2011年),铜线杆(黑杆)生产工艺,无烟气治理措施的再生铜焚烧工艺及设备,50吨以下传统固定式反射炉再生铜生产工艺及设备。 铝:铝自焙电解槽及100KA及以下预焙槽(2011年),利用坩埚炉熔炼再生铝合金、再生铅的工艺及设备,铝用湿法氟化盐项目,1万吨/年以下的再生铝,4吨以下反射炉再生铝生产工艺及设备。 铅:用烧结锅、烧结盘、简易高炉等落后方式炼铅工艺及设备,1万吨/年以下的再生铅项目,未配套制酸及尾气吸收系统的烧结机炼铅工艺,烧结-鼓风炉炼铅工艺。 锌:用马弗炉、马槽炉、横罐、小竖罐等进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或生产氧化锌工艺装备。 锑:用地坑炉、坩埚炉、赫氏炉等落后方式炼锑。 汞:用铁锅和土灶、蒸馏罐、坩埚炉及简易冷凝收尘设施等落后方式炼汞。 其他有色金属:用土坑炉或坩埚炉焙烧、简易冷凝设施收尘等落后方式炼制氧化砷或金属砷工艺装备,烟气制酸干法净化和热浓酸洗涤技术,再生有色金属生产中用直接燃煤的反射炉项目。 3.加大节能力度

严格执行《节约能源法》,按照国家节能减排总体要求,降低有色金属工业单位增加值能源消耗。积极推进有色金属行业电力需求侧管理试点示范。大力推广高效节能选工艺和设备、自热强化熔炼工艺、低温低电压铝电解节能技术、湿法冶金节能先进技术等。积极开展节能技术和项目示范,推进能源转换和梯级利用,加强企业能源管理中心建设,提高能源利用效率。

盐矿详细资料大全

盐矿(halite ore;salt mine )为NaCl的总称,又称为“盐”、“钠盐”。其代表矿物为石盐。盐的原料来源可分为4类:海盐、湖盐、井盐和矿盐。以海水为原料晒制而得的盐叫作“海盐”;开现代盐湖矿加工制得的盐叫作“湖盐”;运用凿井法汲取地表浅部或地下天然卤水加工制得的盐叫作“井盐”;开古代岩盐矿床加工制得的盐则称“矿盐”。由于岩盐矿床有时与天然卤水盐矿共存,加之开岩盐矿床钻井水溶法的问世,故又有“井盐”和“矿盐”的合称——“井矿盐”,或泛称为“矿盐”。

基本介绍 中文名 :盐矿 外文名 :halite ore ;salt mine? 化学元素 :NaCl 别名 :盐、钠盐 代表矿石 :石盐 来源 :海、湖、井、矿 性质 :非金属矿物原料 简介,原料特点,用途,技术经济指标,矿业简史,陆地上的盐矿, 简介 盐矿( halite ore;s alt mine )为NaCl的总称,又称为“盐”、“钠盐”。其代表矿物为石盐。 在日常生活中,习惯上常将氯化钠简称为“盐”。氯化钠除供食用外(惯称食盐),大量用作化工原料(名曰工业用盐),国家统计局的统计年表以“原盐”为总称。中国的盐产量中一直是以海盐为主,其次是湖盐和井矿盐。由于海盐的生产受气候影响较大,加之海盐场多分布于东部沿海地区,为了盐业生产的均衡协调,近10余年来内地的井矿盐和湖盐生产得到较快的发展,因此海盐在盐产量中所占的比例有所减小。 盐矿 盐是世界上利用最普遍的非金属矿物原料,是人们生存的必需品。随着化学工业的发展和新的套用领域的开拓以及人口的逐年增加,对盐的需求量越来越大,因此在国计民生中盐占有相当重要的地位。盐的消耗量是衡量一个国家工业化水平的重要标志之一。中国是世界产盐大国,以海水为原料生产的海盐居世界第1位;海盐、湖盐和井矿盐的总产量居世界第2位,仅次于美国。 原料特点 石盐的化学式是NaCl,理论含量:Na 39.34%、Cl 60.66%。常含有卤水、气泡、泥质和有机质等包裹体;等轴晶系,晶体常呈立方体,很少见八面体,集合体一般为粒状、致密块状,有时呈柱状、纤维状、毛发状、盐华状等。无色透明或白色,含泥质时呈灰色,含氢氧化铁时呈**,含氧化铁时呈红色,含有机质呈黑褐色。玻璃光泽,风化表面或潮解后呈油脂光泽,贝壳状断口,性脆,硬度2~2.6,密度2.1~2.2 g/cm3。易溶于水,200℃时溶解度为26.4%,易潮解,味咸,有凉感。不导电,摩擦发光,焰色浓黄。在1 000℃时其可塑性很强,当温度、压力升高超过其临界点时软化,产生塑性变形,形成软流(固体流)。能与多种物质起化学反应,生成多种钠化合物和氯化合物;电解还原可得到金属钠和气体氯。石盐为蒸发岩矿物之一,是分布最广的一种盐类矿物,主要产于内陆盆地盐湖和被隔绝的浅水潟湖和干枯的海湾中;共生矿物有石膏、硬石膏、光卤石、杂卤石、钾石盐、钙芒硝、无水芒硝、天然碱等。产于沙漠盐泽中的石盐常呈粉末状或土状皮壳。 古代岩盐矿床矿石常见的共生盐类矿物有石膏、硬石膏、钙芒硝、无水芒硝、天青石、方解石、白云石、光卤石、钾石盐、杂卤石、天然碱等。据其主要矿物组分含量可分为9种矿石类型:石盐矿石,硬石膏-石盐矿石,泥灰岩-石盐矿石(或泥砾质石盐矿石),泥砾质钙芒硝-石盐矿石,泥砾质钾石盐-石盐矿石等。矿石结构一般有自形—半自形结构、中粒—细粒结构(部分粗粒—巨粒结构)、斑晶结构等;在低品位岩盐矿石中可见砂状结构、粉状结构、泥质结构等。矿石构造常有:块状构造、条带状构造、层状构造,其次还有斑状构造、角砾状构造、脉状构造、浸染状构造等。岩盐矿石按品位可分为3类:富矿石,NaCl含量大于85%;中等矿石,NaCl含量为50%~85%;贫矿石,NaCl含量为20%~50%。 用途 盐是人类生活的必需品,又是化学工业的基本原料,在农业和其他工业中也有广泛的用途。 食盐是维持人体生理正常发育不可缺少的物质,成人体内一般约含钠90 g、含氯85 g,大部分存于体液中。钠对肌肉的收缩、心脏的搏动、血液的流通、神经信息的传递、碳水化合物和蛋白质的新陈代谢、体液的酸碱平衡等都有重要作用。氯既有维持人体内酸碱平衡和渗透压平衡的作用,又是胃液中电解质的主要阴离子,能促生盐酸,帮助消化。为补充随小便和汗液排出的氯化钠,成人每天一般需要摄入5~8 g食盐,在夏季和高温环境中需增加摄入量。人体如果缺盐,轻则倦怠乏力,淡漠无神,起立时晕眩;重则恶心呕吐,痛性肌肉痉挛,水肿,血压下降;极重则木僵,恶心呕吐以至昏迷,血压进一步下降或不可测知。食盐除作调味品外,尚有调理作用和药理功能:食盐水浴可治疗皮疹、风湿、慢性贫血;肺出血时可服数克盐水止血;在水银、溴、碘、铬等中毒时,服食盐水可解毒;注射生理盐水可作大出血后的急救。以食盐为载体,添加人体必需的有关盐类,可制出系列保健盐和医药盐。在食盐中添加营养素、食用香料和其他调味品,可配制出系列佐料盐和营养盐。 盐在工业上用途很广,是化学工业最基本的原料之一,被誉为“化学工业之母”。工业用盐大部分用于生产纯碱、烧碱、氯气、盐酸、金属钠等。碱和盐酸广泛用于化工、纺织、造纸、肥皂、染料、冶金、陶瓷、玻璃、医药等部门。氯气可直接用于漂白、消毒,也可用于制造漂、毒气及无机化合物,还可用于制造各种有机氯化合物及有机化合物中间体,如合成树脂、香料、除草剂、防腐剂、灭火剂等,也用于合成盐酸,提取溴和碘。金属钠可用作制取复杂有机化合物的催化剂,提取稀有元素的还原剂,制造抗磨合金和充钠蒸气灯泡(钠灯)等。在钢铁工业中用熔融食盐和食盐水进行钢料的回火和淬火,作铸造的型砂粘接剂。在有色冶金工业中用于炼铜(氯化焙烧法)、电解金属镁。盐在农业上可用于选种、施肥等,增加作物产量。在畜牧业上盐是牲畜生长和防治病所必需的。盐也是渔业、食品加工和贮藏、水处理、国防和国家储备必不可少的物质,又是换取外汇的重要出口产品。利用盐水溶液冰点降低的原理,盐还可用来融化道路上的冰雪,减少交通事故。盐又是合成革、人造纤维、塑胶、农药等行业的基本原料。据统计,工业和农业中套用的盐及其衍生物约有15,000种之多。以盐做催化剂的新用途是盐和开发新能源相结合。据《》报导,科学家们充满信心地预言,在不久的将来以盐作为新能源的“盐坡太阳池”将会遍地开花。随着科学技术的飞速发展,盐的套用范围愈来愈广,新的用途将不断出现。 技术经济指标 我国海盐、湖盐、井矿盐的技术经济指标,由于原料来源和加工不同,其生产成本、原材料消耗、产品质量等指标均有较大差异。据《1995年制盐工业统计年报》,就产品质量而言,要求井矿盐含氯化钠99.03%,湖盐含氯化钠96.7%,海盐含氯化钠94.67%(其中以长江口为界,北方海盐含氯化钠96.06%、南方海盐含氯化钠92.99%)。 井矿盐制盐: (1)人工卤水浮选分离制盐工艺技术经济指标成品盐质:含NaCl≥99.3%;卤水耗量:10.5~11.0标 m3/t盐;蒸发热经济:2.6~3.0 k/kg蒸汽。 (2)石膏型岩盐人工卤水机械热压缩制盐工艺技术经济指标盐质:含NaCl≥99.3%;卤水耗量:10.5标m3/t盐;电耗:≤170kW·h/t盐;汽耗(含干燥用汽):60~80 kg/t盐。 (3)芒硝型岩盐人工卤水冷冻法分离制盐工艺技术经济指标盐质:含NaCl≥99.1%;卤水耗量:12~14标 m3/t盐;蒸发热经济:2.6~3.0 k/kg蒸汽;元明粉:含Na2SO4≥99%;元明粉电耗:450kW·h/t;元明粉汽耗1.8~2.0 t/t。 (4)芒硝型岩盐人工卤水兑卤回溶、加热盐析分离制盐工艺技术经济指标盐质:含NaCl≥99.1%;卤水耗量:12~14 标m3/t盐;蒸发热经济:2.6~3.0 k/kg蒸汽;中间硝质量:含Na2SO4 85%~95%。 (5)芒硝型岩盐人工卤水“母液回收法”脱硝制盐工艺技术经济指标盐质:含NaCl≥99.3%;无水硫酸钠质量:含Na2SO4≥99%;卤水耗量:4.4标 m3/t盐;副产无水硫酸钠:75 kg/t盐;汽耗(含无水硫酸钠):1.05 t/t盐;电耗:22 kW·h/t盐。 (6)地下卤水分段蒸发制盐工艺技术经济指标盐质:含NaCl≥98.5%;卤水耗量:11.0~12.5标 m3/t盐;咸水量:50~60 kg/t盐,其中有用化工原料收回率≥85%;蒸发热经济:2.6~2.8 k/kg蒸汽。 (7)固体原盐闪蒸再结晶制盐工艺技术经济指标盐质:含NaCl≥99.3%;汽耗:0.9 t/t盐。 矿业简史 中国是世界产盐历史最悠久的国家之一。相传炎帝时(约公元前4000年的新石器时代)风沙氏煮海为盐。最早起源于山东半岛胶州湾一带,是用火熬海水制盐之鼻祖;此法一直延续到明清之际,逐渐过渡到用滩晒法制海盐。湖盐的生产至少从3000多年前的商代就已开始,即用人工盐田晒制石盐的生产方法,春秋战国时代“肇始于山西解池”(即今运城盐湖)。殷商甲骨文中的“卤”字写作“※”,是人工盐田晒卤制盐的象形文字。井盐的生产始于2000多年前的秦代,公元前256~前251年李冰为蜀守时已用钻井汲卤煎盐方法开利用今四川省双流、成都一带的卤水矿。这种钻井技术约在12世纪前传到西方各国,为世界文明作出了贡献。中国矿盐(亦称岩盐)的生产历史只有数百年,先是从地面或地下直接出,清乾隆五十八年(1793年)云南省石羔井开始用斜井开,到清光绪十八年(1892年)四川省自贡钻出第一口岩盐井,注水溶解后汲卤制盐,为钻井水溶开法的雏形,至1895年开创岩盐的自然连通开工艺。另外,在西藏芒康县、盐井县一带广泛出露盐泉,利用盐泉“汲卤熬盐”已有数百年历史。 中国盐矿分布图 中国是世界上开凿天然气井,并利用天然气煮盐最早的国家。 中国产盐历史悠久,但在旧中国,历代统治者为了扩大盐的税利收入,大都用专卖形式,以严刑峻法控制着盐的产销,束缚了盐业的发展。从清末到北洋军阀统治时期,帝国主义者通过以盐税为抵押的巨额,直接控制了中国的盐业管理大权,肆意榨取盐的税收;日本帝国主义者侵华时期,霸占了沿海大部分盐场,以血腥手段镇压盐工,掠夺盐产品;在国民党统治时期,官僚资本家通过专卖、官运和运商登记等手段,全面强化对盐业产销的控制,低价收购产品,以垄断价格销售。总之,漫长的封建社会和半封建半殖民地社会制度的桎梏,加上帝国主义者的侵略和盘剥,使中国的制盐工业长期处于落后状态,盐矿不清,设备简陋陈旧,生产全靠手工操作。中华人民共和国成立后,经过40多年的努力,盐矿的地质研究、普查、勘探事业以及制盐工业得到了飞速的发展。人民 *** 取了一系列有效措施极大地调动了各方面的积极性。随着石油、天然气等矿产评价工作的深入开展,相继发现了一批盐矿产地。经过大量的地质研究和勘查工作,截至1996年底,我国探明NaCl保有储量达4 000余亿t。第一个五年计画以来,制盐工业有计画地进行了基本建设和技术改造;新建、扩建、改建了南堡、羊口、复州湾、莺歌海、张家坝、吉兰泰等一批大中型盐场(厂);湖南、江西、安徽、河南等省结束了不产盐的历史;湖北省云应地区形成新的井矿盐生产基地。1996年末全国盐的生产能力达到3 887万t,比1950年末的300万t增长了近12倍。盐制盐技术显著进步:海盐区总结推广了新卤、适当深卤、适当长期结晶的新工艺,部分结晶池用了塑胶薄膜苫盖;盐田基本实现了扬水、制卤、结晶、集坨“四集中”要求;生产的机械化、半机械化程度大大提高。大中型湖盐场用了联合盐机或盐船,结合管道水输或轻便铁轨运输,以机械化、半机械化生产代替了手工操作。地下卤水盐矿开由单一提捞法卤,发展为气举卤、抽油机-深井泵卤、电动潜卤泵卤。对于古代岩盐矿床由旱发展到水,水中的钻井水溶法又由单一提捞法改进为单井对流法、多井连通法;成功地用了油垫法、气垫法和水力压裂法盐;硐室水溶法代替旱用于开特低品位的岩盐矿床;用真空制盐法代替了圆锅、平锅煎盐;加之热压蒸发、闪急蒸发制盐的盐硝联产技术的引进,全面改变了盐业生产的面貌。在盐业战线上建立起一整套包括科研、教学、地质、矿、设计、科技情报、钻井、卤、标测、制盐、盐化工、发电、机械制造的工业体系,形成了一支技术力量雄厚的盐业科技队伍。 我国1996年生产原盐2 932.4万t,其中海盐占70.95%、湖盐占7.85%、井矿盐占21.2%。生产海盐的省(市、区)有辽宁、天津、河北、山东、江苏、浙江、福建、广东、广西、海南和台湾;主要生产企业单位有辽宁省的营口盐场、复州湾盐场、皮子窝化工厂和金州盐场、天津市的塘沽盐场和汉沽盐场、河北省的南堡盐场、黄骅盐场和大清河盐场、山东省的羊口盐场和埕口盐场、江苏省盐业公司、海南省莺歌海盐场等。生产湖盐的主要省(区)有内蒙古、山西、青海、新疆、西藏等;主要生产企业单位有内蒙古的吉兰泰盐场和雅布赖盐场,青海的茶卡盐场和柯柯盐场,新疆的盐湖化工厂、七泉湖化工厂、七角井化工厂等。生产井矿盐的省份有江苏、江西、湖南、湖北、四川、云南等;主要生产企业单位有四川的五通桥盐厂、张家坝化工厂、自流井盐厂、邓关盐厂、大安盐厂、长山盐矿和贡井盐厂,云南一平浪盐厂,湖南湘澧盐矿和湘衡盐矿,湖北应城盐矿,江西的江西盐矿等;其中四川自贡盐业生产历史悠久,是全国规模最大的井矿盐工业生产基地,素有“盐都”之称。 陆地上的盐矿 在几万年以前,一些地方是海洋或者内陆洒脱。后来因气候干燥、高温,使海水或湖水蒸发结晶成盐,再经过海陆变迁,使海盆地和内陆湖变成了陆地,海盆地中的盐聚集在一起便形成了盐矿。 陆上盐矿主要是石盐,石盐就是我们平时吃的食盐,由于它产于山岩之中,因此又称为岩盐。石盐的化学成分是氯化钠,它的晶体呈立方体状,块大透明,因此古人称它光明盐、水晶盐、玉华盐、白盐。 江苏省淮安市拥有全世界最大的盐矿,俨然成为中国盐都。淮安矿系在1956年江苏省石油勘探指挥部和江苏省煤田地质勘探第三地质队在钻探中发现,中心位于淮安市楚州区朱桥镇。18~1985年间,探明储量为2500亿吨,含矿地层为中生代白垩系浦口组(K2p),顶板埋藏深度800~900米,边缘矿层顶板埋藏600~700米,含盐系地层厚达1400~1800米,盐层累计厚度平均为347.41米,矿层含盐率一般为50~60%,盐层品位高。1500米深度以上含盐系厚度为967米;盐矿床累计厚度377米,储量为1018.05亿吨。号称“川东门户”的万县,湖北省潜江县,四川省的自贡,石盐储量都十分丰富。 维利奇卡盐矿 波兰的维利奇卡盐矿120米深的部位已完,建成了地下盐晶宫和盐矿博物馆。四周岩壁上雕刻了立体的动物和人像,在灯光照耀下,辉煌瑰丽,使人感到置身于“水晶宫”中一般,每年有70万旅游者前往探奇。这里还特设盐井医院,使病人呼吸含盐空气,可以治疗哮喘病和肺病,疗效以儿童患者最高。更有趣的是,那里的大块结晶的石盐中还包裹着海洋植物和珊瑚。这就证明了这一带原来是一片古海域。 维利奇卡盐矿博物馆 美国德克萨斯州的卡尔盐矿,既是产石盐的矿井,其空间又用作地下仓库。这个矿已开了近60年。离地面200米深处,废弃了的坑道两侧,有1.5万个房间,内藏珍贵物品和档案资料。