油价因素_油价算法缺陷分析
1.雪佛兰新赛欧发动机故障灯亮起怎么回事
2.最近打算买个车 马2 两厢的怎么样 谁能给具体分析一下!~ 要具体一点!~
3.海外石油投资项目实物期权经济评价方法研究
4.结合历史唯物主义分析我国当前的环境问题及策对
5.自动驾驶技术基本知识介绍
雪佛兰新赛欧发动机故障灯亮起怎么回事
分析如下:
发动机故障灯亮通常有如下原因:
1、燃烧状态不好。
发动机燃烧状态不好是发动机故障灯亮的主要原因。
2、发动机爆震
通常有三种情况:
第一种情况:汽车无力。
第二种情况:汽车无力,发动机噪音过大。
第三种情况:明显有敲缸声音。
在第一种情况下,有的发动机故障灯会亮,有的不会亮,在第二种和第三种情况下,发动机故障灯必然会亮起。
3、发动机故障灯亮的内在原因:
(1)燃油质量不好。
(2)发动机汽缸内部不干净、有沉积的积碳。
扩展资料
保养维修
汽车发动机需要定期做保养。在驾驶经过一些特别潮湿或者粉尘特别大的地区时,也要对发动机的相关部件做一些检查保养。
一、定期更换机油和机油滤芯。
(1)机油从机油滤芯的细孔通过时,把油中的固体颗粒和黏稠物积存在滤清器中。
(2)如滤清器堵塞,机油则不能顺畅通过滤芯,会胀破滤芯或打开安全阀,从旁通阀通过,把脏物带回润滑部位,促使发动机磨损加快,内部的污染加剧。
二、保持曲轴箱通风良好
(1)空气中的污染物会沉积在PCV阀的周围,可能使阀堵塞。如果PCV阀堵塞则污染气体逆向流入空气滤清器。
(2)污染滤芯使过滤能力降低,吸入的混合气过脏,更加造成曲轴箱的污染,导致燃料消耗增大,发动机磨损加大,甚至损坏发动机。因此,须定期保养PCV,清除PCV阀周围的污染物。
三、定期清洗曲轴箱
(1)发动机在运转过程中,燃烧室内的高压未燃烧气体、酸、水份、硫和氮的氧化物经过活塞环与缸壁之间的间隙进入曲轴箱中,与零件磨损产生的金属粉末混在一起,形成油泥。量少时在油中悬浮,量大时从油中析出,堵塞滤清器和油孔,造成发动机润滑困难,引起磨损。
(2)此外,机油在高温时氧化会生成漆膜和积碳粘结在活塞上,使发动机油耗增大、功率下降,严重时使活塞环卡死而拉缸。因此,定期使用BGl05(润滑系统高效快速清洗剂)清洗曲轴箱,保持发动机内部的清洁。
四、定期清洗燃油系统
(1)燃油在通过油路供往燃烧室燃烧的过程中,不可避免地会形成胶质和积碳,在油道、化油器、喷油嘴和燃烧室中沉积下来,干扰燃油流动,破坏正常空燃比,使燃油雾化不良,造成发动机喘抖、爆振、怠速不稳、加速不良等性能问题。
(2)使用BG208(燃油系统强力高效清洗剂)清洗燃油系统,并定期使用BG202控制积碳的生成,能够始终使发动机保持最佳状态。
(3)传统的拆卸清洗方式会因为装配误差影响发动机的稳定性,使用,既能在不拆卸的情况下清除油箱、油道、喷油嘴、燃烧室及排气气体系统中的油泥、积炭,并且能修护机器运行中造成的摩擦磨损。
五、定期保养水箱
(1)发动机水箱生锈、结垢是最常见的问题。锈迹和水垢会限制冷却液在冷却系统中的流动,降低散热作用,导致发动机过热,甚至造成发动机损坏。
(2)冷却液氧化还会形成酸性物质,腐蚀水箱的金属部件,造成水箱破损、渗漏。定期使用BG540(水箱强力高效清洗剂)清洗水箱,除去其中的锈迹和水垢,不但能保证发动机正常工作,而且延长水箱和发动机的整体寿命。
六、燃油系统的保养清洗
(1)由于汽车燃油分配系统非常精密,不能随便拆解。
(2)在清洗发动机燃油系统时,要用发动机免拆清洗剂,因为用免拆清洗剂不需要拆解燃油系统,一方面可以起动到彻底清洗燃油系统的作用,另一方面有利于保护发动机的燃油系统。
参考资料:
最近打算买个车 马2 两厢的怎么样 谁能给具体分析一下!~ 要具体一点!~
1、提速快、油门反应灵敏
大部分马自达2车主都认为该车在加速方面表现突出。开着马自达2,有种畅快的驾驶感觉,油门反应灵敏,发动机运转声音细腻,高转时的嘶鸣 让人亢奋,5000转往上,只维持一两分钟,发动机声音逐渐盖过了风噪和路噪,但感觉明显不如4000转畅快,不下赛道飙山路或者比0-100公里提速什 么的,完全不用涉足这个转速区段。
2、操控功力突出
马自达2秉承马自达的运动基因,很多车主对马自达2的操控性赞誉 有加。有车主认为,马自达2的底盘很有厚实感,不像一些日系小车那么“轻飘飘”,车主张先生更觉得,马自达2的底盘的扎实程度只比polo稍差,与206 相当。虽然底盘出色,但由于车身本身较轻,在行驶过程中也有一些缺陷,车主罗先生反映,于遇到不平的路面时,很轻的车身还是漏了馅,车身跳起后比较容易有 轻微的左右摆动,抓地力不太足,让人不敢放松。降低悬挂和选用更好的轮胎应该能明显改善。
3、油耗表现中规中矩
虽然 是紧凑小车,马自达2显然不是把燃油经济性作为主要卖点。开两厢马自达2 1.5L AT的高先生在国道上百公里油耗为6.85升,平均速度在100公里 以上,而在市区道路,百公里油耗为9.24升。总的来讲,马自达2在高速上的油耗表现很出色,跟其他以低油耗著称的日系小车如飞度、骊威等比较起来差距不 大,6.2-6.5升(1.5L车型),城市道路平均7-8升的表现也算中规中矩了。
4、内饰设计很有特色,不少贴心设置
马自达2中央控制台设计得像一个米老鼠造型,这为它增色不少。另外,不少车主觉得马自达2的音响效果不错,还有一些小设置很贴心,如行车电脑除了总日程 表外,还有2个小日程表,一个可以用来测量加油后的里程,一个可以用来测量特定的里程数;后窗上有个雨刮器,在暴雨天气,都不会影响后方视野;车内后 视镜有防眩光功能,晚上开车很实用。
5、空间紧凑、置物空间不够实用
马自达2是小车,而且是比较照顾前排的小车,为 保证前座位的足够空间,后座就显得有些小,乘坐3人会很勉强。也有车主拿它与其他同级小车相比,认为比206、雨燕强,但比飞度和威驰差点,和骊威就没法 比。对于三厢版马自达2,大部分车主对后备厢的空间比较满意,认为不输于很多三厢中级车的水平。还有车主认为,马自达2的置物空间虽多,但是实用性不够, 如手套箱很小,放不了多少东西。
海外石油投资项目实物期权经济评价方法研究
刘雅馨 钱 基 熊利平 郭宝申 丁建可 干卫星
(中国石化石油勘探开发研究院,北京 100083)
摘 要 高风险和分段决策的海外油气投资项目大多具有放弃、扩张和延迟等多种期权特性。本文深入研究了实物期权机理,对比贴现现金流法,加深了对项目实物期权价值的理解。结合海外油气项目,提出蒙特卡洛模拟解决波动率参数的方案,在Excel中开发应用模型并对实际案例进行价值评估,对海外油气投资项目在风险环境下的投资机会柔性管理的期权方法应用取得进展。
关键词 海外石油投资项目 经济评价 实物期权 贴现现金流 布莱克-斯科尔斯定价模型
Valuing Overseas Petroleum Exploration and Development
Projects by Means of Option Pricing Theory
LIU Yaxin,QIAN Ji,XIONG Liping,GUO Baoshen,DING Jianke,GAN Weixin
(Exploration and Production Research Institute,SINOPEC,
Beijing 100083,China)
Abstract The stage decision of the oversea petroleum exploration and development investment with high risks and many uncertainties is a kind of option activity such as abandon option,delay option,expand option.The reason and mechanism of lying the real options method in the economic evaluation of the projects are discussed in this paper.The characters of real options of the petroleum exploration and development projects are analyzed. Example analysis is provided to demonstrate the evaluation efficiency.The real option method may help to enhance the economic value and accuracy of decision making of the petroleum exploration and development projects.
Key words Overseas petroleum E&P projects;economic evaluation;real option method;NPV;B-S model
2012年我国石油对外依存度攀升至56.4%[1]。业内人士普遍认为,国内原油短期大幅增储上产较难。化解目前这种危机的有效途径是国有石油公司继续 “走出去”。
中国石化作为海外上市的中国国有石油公司,不仅肩负着获取、保障国家能源安全的使命,还要考虑股东利益和自身的发展。良性战略投资是公司成长的关键,投资决策应建立在科学经济评价的基础之上。
贴现现金流技术是当前的主流价值评估技术,广为人们接受,但是该方法忽略了项目内在的管理价值。而石油勘探开发项目具有典型的风险高、投资大、周期长的特点,海外相比国内具有更大的政治、经济、技术以及地质风险。随着民族主义的兴起,国对外开放的多是勘探风险大和开发难度大的区块,而且经济利益在国和石油公司之间分配的过程中,国处于主导地位、不断调整财税政策,无论是在经济有利还是不利的情况下,国总是有所得,风险完全由国际石油公司承担,致使可供开拓的海外油气项目风险越来越大,边际项目越来越多。在当前激烈竞争的油气市场环境下,贴现现金流技术会导致项目决策时放弃不确定性高但上升潜力较大的投资项目。
实物期权法能够贴现现金流技术,克服其处理结果不确定性的不足及决策路径僵化的问题,但实物期权法因原理复杂难以理解而至今未得到广泛应用。调研实物期权法的机理,分析石油上游生产价值链,对比贴现现金流技术,应用典型的实物期权工具和技术,结合案例,研究实物期权法如何用于增加油气项目的价值,将有助于促进该方法在油气项目价值评估中向应用转化。该研究在当前激烈竞争的油气投资市场环境下,对改善现有投资评价技术的不足、丰富现有方法体系、增加决策信息丰度、减少决策失误、提升企业价值创造能力十分必要。
1 石油勘探开发项目期权特性分析
海外石油勘探开发项目投资的目的是获取石油价值。理解油气勘探开发项目的价值链是理解其投资价值评估和决策的基础。
海外油气勘探开发项目主要用全球公开招标的经营模式,中标者将取得的作业权,按照不同的合同模式支付给国(或企业)部分产品或收益,主要的合同模式包括经营许可证(License Agreement)、产品分成合同(Product Share Contract)、服务合同(Service Contract)和联合经营(Associated Operation)。其中,经营许可证和产品分成模式最为普遍,即中标者拥有的完全作业权,直接参与的生产过程且承担勘探开发风险。
海外石油和天然气勘探开发项目的典型商业决策时序代表着一个期权行为。石油勘探开发项目的投资是分阶段投入的。石油公司首先需要获得对产地进行勘探的许可证,然后进行勘探投资,通过获取地质数据以确定他们的风险和预期回报。如果该预期结果是乐观的,将引导进行钻探;如果钻探成功,石油公司将确认并详细描述产油区;若产油区有经济性,公司将进行开发。当石油产品的收益降低到低于运营成本时,公司将放弃该项目。其进行过程中的每一个状态都代表了一个期权。石油公司可以在各个决策点综合分析经济发展、技术发展、政治趋向、合同期限等条件,决定后续的投资行为,即是继续投资、延缓投资,还是放弃投资。
2 贴现现金流法及其缺陷
贴现现金流法(DCF)考虑发生在油气勘探开发项目整个寿命期内的各种效益与费用,用资金时间价值技术,将这些发生在不同时点的效益和费用折算成现值,借以确定被评估资产价值。DCF技术的基础是净现值(NPV)法,NPV计算的两个步骤:一是预计未来的现金流量;二是将这些现金流量按一定的折现率折现成现值。决策时根据NPV的正负决定项目的取舍。
然而,石油勘探开发项目具有典型的风险高、投资大、周期长的特点。石油行业投资先行,投资量大。投资的收益受到丰度和品位的限制,而地质储量风险难以预测。石油又是稀缺的、不可再生的耗竭性,容易受国家政策的影响;项目开发周期一般都比较长,投资见效慢,在此期间,油价、投资及经营成本等项目价值影响因素不断波动,因此,项目未来的现金收益及支出难以预测。再加上DCF法的要么立即投资、要么永远放弃的决策僵化的弱点,使得用DCF法来评估石油投资有其致命的弱点,即容易低估项目的投资价值,导致有价值、有潜力的项目被误评而遭抛弃,而一些无价值的项目却有可能被评估认为可以继续投资。
3 实物期权法
期权理论提供了分析和测定不可逆投资项目中不确定性的新方法。油气投资的不确定性,使其具有高风险性,但同时高风险性给油气投资带来了投资机会的价值,也给油气投资评估提出了新的课题,即用期权方法来评估油气投资。
3.1 机理研究
实物期权估值技术起源于金融期权领域。金融期权是金融衍生工具中的一种合约,合约的持有者在规定的时间(expiration)内有权利、但没有义务按照合约规定的价格(exercise price,strike price)购买或卖出某项资产(股票、债券等)[2]。
实物期权是在预定期间内以一定的成本,有权利而不是义务取延迟、扩张、缩减以及放弃的行动[3]。实物期权经常包含于投资项目或投资机会之中。通常分为推迟期权、扩张期权、收缩期权、放弃期权、转换期权和增长期权6个基本类型[4]。
金融期权与实物期权的相似性是实物期权理论用于企业投资估值的基础。企业投资与金融期权有很大的一致性。首先公司有权但不是义务投资某个项目;其次,公司有一定的时间段去投资,通常不需马上投资。所以公司有权利选择在环境有利时投资,否则放弃投资。这与金融看涨期权有相同的风险结构,期权持有者从优势中获利,但最大限度地减少损失,最多只是损失期权执行价格。
实物期权法的核心价值在于通过改变项目执行路径,提供管理的柔性价值,比如延迟投资至经济环境比较有利时再进行。这种理论被认为是高不确定性风险下项目经济评价的现代方法。
3.2 估值模型
经典的期权估价模型有欧式看涨期权的Black -Scholes定价模型和美式期权的二叉树期权定价模型。Black-Scholes定价模型如下:
油气成藏理论与勘探开发技术(五)
其中:C——期权价值;S——资产现值;X——期权执行价格;t——期权有效期;r——无风险利率;σ——资产价值波动率。
油气成藏理论与勘探开发技术(五)
油气成藏理论与勘探开发技术(五)
实物期权与金融期权具有相似的风险结构,这为使用金融期权定价模型为实物期权定价提供了依据(表1)[5]。
表1 金融期权与实物期权的比较
实物期权具有隐蔽性、随机性、条件性、组合性和相互影响性等特点,因而它比金融期权更加复杂,金融期权的定价模型应用于实物期权时应根据实物期权存在的环境进行相应的修正。但是简单实物期权的定价可以使用金融期权的定价模型。
3.3 参数解决方案
根据期权理论,波动代表价值,波动率越高,项目期权价值越大。这是由期权的收益结构造成的,对于期权持有者,在期权执行过程中,损失的最大限额是权利金,即损失有限,而收益却随波动率上升而无限上升。参数波动率是期权价值的关键影响因素,进而影响考虑期权价值的投资决策。
用经典模型进行实物期权价值评估时,由于实物资产不像金融资产有交易市场,故缺少可供参考的历史数据,很难取得项目的历史和隐含波动率。实物资产价值波动率很难取得,这也是应用该方法的最大障碍之一。
利用蒙特卡洛模拟制造伪随机的方法可以求得项目的预测波动率[6],该方法可以综合考虑各项目价值影响因素对项目价值的影响,比用油价波动率来代表项目价值波动率的参数解决方案更科学。尤其是对于海外项目,经营现金流受国财税体制控制,经营杠杆对波动率的影响较大,针对不同的财税体制,进行模拟波动率计算,为参数取值的更精确求解提供了新思路。
4 应用研究
为了深刻理解期权理论,选取某海外油气项目,分别应用贴现现金流技术和实物期权技术进行项目的基础价值和期权价值的求解,通过实证和对比研究,加强对项目期权价值含义及本研究提出的估价方案的理解,从而推进该方法在海外油气勘探开发项目经济评价中的应用。
4.1 项目决策背景
2011年某公司接手某项目正式运转后,由于该项目圈闭规模小,增储空间有限,产量水平低,并且无运输管网,造成单位成本高,拟通过新的勘探开发投资,达到增产降本的目的。需对该投资部署进行可行性决策。
4.2 项目基础价值
4.2.1 项目概况
该项目是2010年某公司在哥伦比亚收购的4个在产区块,区块总面积1251.58km2。该公司拥有这4个区块100%的权益。合同类型为矿税制,勘探期6年,开发期24年。风险前圈闭量3570万桶,原油2P可储量为2500万桶。
4.2.2 评估基本设与基础方案
应用贴现现金流技术,基准折现率为10%,评估基准日为2012年1月1日,评价期从2012年至合同期末,2012年及以后的原油价格按照预测的WTI基准油价进行贴水,并考虑从2015年起通胀2.5%,基础方案如下:
4.2.2.1 产量预测
根据评估该项目可储量为2500万桶。根据开发方案,在2013年达到产量高峰,2014年产量开始较快速下降,在评价期内累计产油1724万桶,产量剖面见图1。
图1 某项目用基础方案时的预测产量
4.2.2.2 投资预测
在考虑通胀的情况下,预计合同期内某公司在该项目承担的权益勘探开发投资合计为114.3百万美元,具体投资时段见表2。
4.2.2.3 成本预测
在2011年单桶现金成本基础上作一定调整和测算,2012年至合同期末,考虑自2014年起通胀2.5%的情况下,后续总成本费用为10.70亿美元,包括操作成本、运输成本与管理服务费,平均单桶成本为62美元。
根据哥伦比亚财税体制[7],石油开发项目涉及的主要税种有矿税、培训费、地面租金、开税、开发期延期费、石油暴利税(高价费)、资产税、废弃费、公司所得税等,财税框架如图2所示。
表2 某项目后续投资情况
图2 合同模式财税条款结构
4.2.3 基础方案价值
基于上述设、基础方案及哥伦比亚财税制度,应用DCF技术,建立NPV评价模型,基础方案的NPV价值为-0.09亿美元。根据该评估结果,项目的投资无法收回,应放弃投资。
4.3 项目实物期权价值
本项目2011年根据DCF方法决策时,NPV价值小于零,应该考虑放弃投资,但是从实物期权的角度看,由于项目接手时间短,项目组对项目价值影响因素的认知存在很大的不确性,所以估计的项目价值具有很大的不确定性。同时,目前投资项目价值处于浅度虚值状态,可以考虑取期权价值分析,通过改变投资路径,增加项目投资价值。结合该公司年度财务预算制度,考虑延迟一年投资的期权价值,即延迟期权的价值,待市场及项目经营信息进一步明朗后,再具体判断是否执行投资,该项柔性决策是有价值的。限于篇幅,用经典B-S模型计算延迟实物期权价值。
4.3.1 参数取值
4.3.1.1 波动率参数的取值
用B-S模型估价,关键是项目价值波动率参数的选取。应用本研究的成果进行参数计算。
首先根据敏感性分析,确定项目价值的关键影响因素为模拟用随机变量,这样可以做到抓大放小,提高估价效率。
对该项目敏感性的测试表明,油价、产量变化对NPV的影响最为敏感,且敏感程度较高,其次为成本、投资(图3)。由于项目处于开发后期,产量较落实,选取油价和成本作为关键随机变量进行蒙特卡洛模拟。
图3 某项目敏感性分析
然后应用水晶球软件,应用NPV模型,进行蒙特卡洛模拟。
1)油价分布:根据文献研究成果,油价的分布选取三角分布形态(图4)。由于项目处于北美,所以选取WTI为基础油价,整个项目取每桶85美元为可能的油价,最高120美元,最低70美元。
图4 油价三角分布
2)成本分布:由于进入时间较短,无足够的历史数据参考,无法拟合成本分布,所以选取适合数据较少情况下统计分析的三角分布。结合项目情况研究,A、B、C、D4个单位成本的最可能、最大值、最小值分别为每桶:51.29美元、64.12美元、70.53美元;30.75美元、38.44美元、42.28美元;70.41美元、88.02美元、96.82美元;39.33美元、49.16美元、54.08美元。成本分布的三角分布呈正偏态(图5),未来成本降低的概率大于上升的概率,会促使项目价值升高。
图5 分区块单位成本三角分布
3)NPV模拟值:使用水晶球软件进行10000次的蒙特卡洛模拟,得到项目均值为0.34亿美元,标准差0.71,这即是项目期权价值计算所用的波动率。项目的NPV价值模拟结果如图6所示,从图可以看出NPV大于零的累积概率是66.47%,大于NPV小于零时的累积概率,故看涨期权价值。NPV价值模拟得到的标准方差就是蒙特卡洛法模拟出的项目价值的预测波动率。
4.3.1.2 其他参数
项目开发投资现值、未来经营现金流现值来自于DCF模型,无风险利率取长期国债利率,期权期限根据该公司1年期财务预算制度取1年。
4.3.2 延迟期权价值
从NPV模型及蒙特卡洛模拟,可以得到期权计算的参数,输入Excel下开发的B-S期权模型,得到期权价值为0.24亿美元。
4.4 项目价值
NPV模型估价该项目的基础方案价值是-0.09亿美元,不确定环境下决策柔性的延迟期权价值为0.24亿美元,考虑期权后项目总价值为0.15亿美元,因而认为该项投资不是放弃,而是可以延迟进行。决策标准更改后会产生不同的决策结果。
5 结论
实物期权的产生为投资价值的不确定性分析提供了新思路。该方法借用金融期权理论,将企业拥有的投资机会等同于一个买方看涨期权,设项目价值的波动服从某种随机过程,考虑企业根据环境变化及时更改投资策略的管理柔性,并利用金融期权定价理论求解投资的机会价值,从而对传统贴现现金流法的 “要么立马投资、要么放弃投资” 的决策设造成的项目价值低估进行了补充修正,提高了项目估值的科学性。
图6 蒙特卡洛模拟NPV结果
参考文献
[1]钟晶晶.中国石油对外依存度升至57%[EB/OL].(2012-10 -25).://finance.ifeng. com/news/hqcj/20121025/7198096.shtml.
[2]Black F,Scholes M.The pricing of options and corporate liabilities.Journal of Political Economy,13,81(3):637~654.
[3]Copeland T E,Antikarov,V.Real options:A practitioner’s guide,1st ed.New York:Texere.2001.
[4]郁洪良.金融期权与实物期权——比较和应用[M].上海:上海财经大学出版社,2003:117~118.
[5]Damodarana A.The promise of real options.Journal of Applied Corporate Finance,2000,13(9):29~44.
[6]Johnathan M.Real Option Analysis Course,2003,42pp.
[7]哥伦比亚公开招标网站(2010).://.rondacolombia 2010.
结合历史唯物主义分析我国当前的环境问题及策对
当前我国能源发展中存在的问题与对策建议
存在的主要问题:
1、电源结构不合理将加剧煤炭供应和铁路运输压力
为解决当前电力供应紧张的局面,国内出现了电力项目建设高潮,预计2004年、2005年将分别新增发电装机3500万千瓦、4800万千瓦。由于新增发电装机有相当一部分是火电,如2004年预计投产2600万千瓦火电机组,相应的电煤需求也将在2003年8.8亿吨的基础上增长7000至8000万吨。
最近两、三年我国煤炭产量高速增长。按照国家统计局和煤炭协会的估计,2003年我国原煤产量16亿多吨;今年上半年原煤产量8.8亿吨,同比增长15%。目前我国煤炭产量的增长,主要通过大型煤矿超能力生产和乡镇小煤矿产量急速增加实现,而这种高强度大幅度超能力增产,将使煤炭行业的产能比进一步失调,进而影响煤炭连续稳定供应。
此外,能源需求(特别是电煤)的高速增长也造成了全国运输紧张。今年上半年全国铁路煤炭运输4.8亿吨,同比增长12.2%,比全路货运量平均增幅8.7%高出3.5个百分点,达到历史新高,但仍不能满足煤炭运输的需要。如果不优化电源结构,不合理布局电源项目,铁路运输瓶颈将长期存在,扩大电源建设、缓解能源供应紧张的目标也无从实现。
2、煤炭价格机制存在缺陷,“煤、电价格之争”已对经济稳定持续增长产生负面影响
在我国现有的条件下,电和煤已经成为能源供应链上相关性和依存度相当高的产业。90年代初期进行的煤炭工业体制改革使得除发电用煤外,煤炭价格由市场供求关系决定;现在发电用煤也实行市场价格,但电价受到国家控制,不能随意调整,相应地,电煤价格调整也受到制约。
近年来随着电力紧缺的加剧,燃煤机组急剧增长,电力用煤在煤炭产量中的比例不断提高,目前已达到50%左右。而合同电煤价格与煤炭的市场价差也在逐年加大,目前市场煤炭价格普遍大大超过电煤供应价格,最高价格差已经接近150元/吨,煤电价格矛盾增加。
为疏导电煤矛盾,国家在半年内两次调整电价以抵消煤价上涨对电力发展的影响;但是“不如变化”,电价的调整尚未到位,煤炭的价格就又涨了。伴随着煤、电紧缺的形势,电和煤的价格轮番上涨,已经成了我国经济生活中难解的怪圈。产生上述现象很大程度在于煤炭价格机制不合理,频频发生的煤、电之争,昭示着煤炭的进一步市场化改革和电煤价格的放开,已是十分迫切。
3、电源建设前期工作出现“跑马圈地、盲目布点、无序开发”
电力体制改革,厂网分开后,适逢缺电局面,五电集团纷纷与地方签订协议,谋求电源建设项目,在全国范围内的“跑马圈地”,“争抢”。目前这种端竞争出现的问题是:1)项目前期工作落后,前期项目储备资金不足;2)建设地点好,经济效益好的电源项目大家抢着建,地处偏僻、经济效益差的电源项目无人问津。
电源的省级壁垒开始显现,保护地方投资者的倾向有所抬头;而国家尚未形成对电源进行科学合理规划的调控机制,现行的宏观调控手段也不能有效发挥作用,行政管理手段失效。
电力项目开发的市场机制不成熟,通过竞争方式择优选择投资者的做法有待完善和规范,项目开发秩序无法建立。
4、石油需求快速增长,对外依赖程度不断加深,但缺乏应对国际市场油价波动的措施
世界石油、天然气丰富,有较展潜力,可保证中长期稳定供应。截止2003年底,全球石油剩余探明可储量1567亿吨,探明储量比上年略有增加,储产比约为4:1。近十年来,我国石油消费保持了年均5.5%的增长率,并且有逐步加快趋势,预计2004年我国石油消费将达2.8亿吨,甚至更高;在石油消费逐年递增的同时,我国对进口石油依赖程度也在逐步提高,2003年我国净进口石油9000多万吨,2004年可达1.1亿吨。受多种因素影响,国际市场油价波动频繁,而我国缺乏应对高油价的防范措施,特别是作为世界上第二大石油消费国,对国际市场油价的影响力却很小。
虽然高油价会促进节油、代油技术的研发,但如果没有更好的应对措施,单靠贸易保证国内石油供求缺口,必然会对国民经济造成负面影响,有关专家对我国1993-2000年的GDP、石油进口数量和价格波动进行了综合分析,分析结果表明:油价每上涨1%并持续一年时间,将使我国GDP增长率平均降低0.01个百分点。长远来看,我国石油将依靠国际市场满足国内需求乃大势所趋,迫切需要我国取积极策略,在稳定、安全供应石油方面做出探索,从国际价格的被动承受者变为积极影响者,减缓油价波动对我国国民经济发展的冲击。
5、西南水电产区高耗能行业畸形发展,给当地环境、能源、运输带来巨大压力
在世界范围内,水电开发与高耗能产业联系密切,互相依存。目前,我国高耗能工业布局正逐步从沿海向水电丰富的西部地区转移。与国外高耗能企业推动水坝建设不同的是,我国西南高耗能工业大多由地方大力推动起来的。在水电丰富的西南地区,在大上水电站的同时,高耗能产业“遍地开花”,几乎所有已经和正在大力开发水能的市、州、县都在发展耗能产业。并且有不少高耗能产业都是面向国际市场生产,产品出口国外。
2002年下半年以来,国内能源趋紧,而此时西部的高耗能工业企业依然享受优惠电价;在国家三令五申取消高耗能工业优惠电价之后,一些地区依然我行我素,利用地方电网独立运行的“优势”,继续给予高耗能工业优惠电价。“一高一低”间的巨大反差,使高耗能产业一时间成了暴利行业,西南水电富集区成了高耗能工业发展的“乐园”。同时,西南一些老水电厂也“近水楼台”,利用低价电自己投资生产高耗电产品,这些企业往往设备简陋,技术不成熟,污染严重。
值得注意的是,目前国内已有高耗能企业建自备火电厂的现象。如果没有切实措施,东部高耗能企业也会到西南“圈水”建自备水电站,然后将企业转移到西部。如果任由这些低门槛发展的高耗能产业畸形扩张,不仅会加重我国能源紧张局面,还会严重污染西南地区的生态环境;如果仅为高耗能行业大建水坝,更会使脆弱的西部生态环境雪上加霜。
6、宏观调控政策总体执行良好,但仍然存在落实不积极的问题,这将会给今后的可持续发展、环境控制埋下隐患
这说明,仅仅依靠产业政策和行政指令还不足以保证宏观调控政策的执行,必须要探索市场经济条件下的激励政策,要与法规条例政策(凡不符合能效标准的电气装备、产品一律不准生产)相配合,要与市场配置(竞价上网)相结合。
7、能源需求侧管理缺乏长效激励机制
由于电力供应紧张,各地纷纷用能源需求侧管理(DSM)的方式,利用价格杠杆,实施差别电价,移峰避峰,引导科学用电,调整负荷曲线,减少限电、拉闸的现象发生。缺电在一定程度上促进了能源需求侧管理机制的发展。
从国外实施“需求侧管理”的本意看,它是在不牺牲用户的生活品质和生产能力,通过科学使用能源的合理技术,来实现有效降低负荷,减少能源消耗,而且这些技术的投入最终具有较好的经济回报。
目前我国针对电力短缺实施的需求侧管理只是提倡蓄冷、蓄热等转移负荷技术措施,对于使用节能灯、节能变压器、节能电机、节能家用电器,以及以天然气冷热电联产技术替代电力暖、电力空调和电力供热水等内容关注很少。
从长远看,能源(电力)需求侧管理不仅仅是为了应对目前的能源(电力)供应紧张,更要在未来我国能源(电力)供求基本平衡的状况下,通过市场手段,鼓励用户或消费者主要改变用能(电)方式。而这方面我国能源需求侧管理的经济激励政策仍嫌薄弱,特别是长效激励机制较为缺乏,这使得需求侧管理能否得到长期有效实施有较大不确定性。
8、能源统计体系亟待完善
可靠的能源基础数据体系有益于的宏观决策。机构改革之前,各部委均有相应的节能机构以及地方节能管理机构,在能源基础数据的收集、分析方面具备比较好的条件。但机构改革以后,过去的一套节能管理体系相应取消或弱化,影响了能源基础数据的获取,也缺乏对能源基础数据的客观分析。能源项目具有投资大,周期性长的特点,能源基础数据的不可靠、忽高忽低都会影响能源决策、能源战略的制定与实施。
20世纪90年代后期以来我国能源生产、消费数据的戏剧性变化凸显了转型时期加强能源数据的收集、统计工作的难题,能源统计体系不完善导致我们缺乏可靠的能源数据,无论对能源供求现状的分析而言,还是对能源决策都带来了很大困扰。
政策思考与对策建议
以科学的发展观为指导,设定全社会可持续的能源需求目标,促进节能型社会的建立;重新思考能源结构和发展战略问题,促使我国能源尽快向多样化方向进行调整;改革的能源管理体制,建议组建统一的能源管理部门,以体现国家整体利益,统筹能源各产业的发展和利益协调,严格按照“政监分离”的原则,组建职能相对集中、独立的监管机构;积极推进能源领域的体制改革,并通过税收政策、环保折价、价格监管等改革措施,形成各能源产品合理的比价关系,以有利于能源结构优化和调整;树立能源大国思想,取综合措施,保证我国石油供应安全。积极实施石油进口多元化战略,加快建立石油储备体系,积极参加国际性和地区性能源合作组织,积极鼓励石油公司加快分享海外油气的节奏,扩大分享比例;加强煤炭生产能力建设,统一认识,加快核电发展;进一步用经济手段限制煤炭及高耗能产品的出口;建立可靠的能源数据体系和定期能源形势公布制度,支持的宏观决策。
自动驾驶技术基本知识介绍
自动驾驶车,是一种无须人工干预而能够感知其周边环境和导航的车辆。它利用了包括雷达、激光、超声波、GPS、里程计、计算机视觉等多种技术来感知其周边环境,通过先进的计算和控制系统,来识别障碍物和各种标识牌,规划合适的路径来控制车辆行驶。
美国汽车工程师协会(SAE,Society of Automotive Engineers),则将自动驾驶划分为 0~5 共六级。
Level 0:无自动化(No Automation)
没有任何自动驾驶功能或技术,人类驾驶员对汽车所有功能拥有绝对控制权。驾驶员需要负责转向、加速、制动和观察道路状况。任何驾驶技术,例如现有的前向碰撞预警、车道偏离预警,以及自动雨刷和自动前灯控制等,虽然有一定的智能化,但是仍需要人来控制车辆,所以都仍属于 Level 0。
Level 1:驾驶(Driver Assistance)
驾驶员仍然对行车安全负责,不过可以授权部分控制权给系统管理,某些功能可以自动进行,比如常见的自适应巡航(Adaptive Cruise Control,ACC)、应急刹车(Emergency Brake Assist,EBA)和车道保持(Lane-Keep Support,LKS)。Level 1 的特点是只有单一功能,驾驶员无法做到手和脚同时不操控。
Level 2:部分自动化(Partial Automation)
人类驾驶员和汽车来分享控制权,驾驶员在某些预设环境下可以不操作汽车,即手脚同时离开控制,但驾驶员仍需要随时待命,对驾驶安全负责,并随时准备在短时间内接管汽车驾驶权。比如结合了 ACC 和 LKS 形成的跟车功能。Level 2 的核心不在于要有两个以上的功能,而在于驾驶员可以不再作为主要操作者。
Level 3:有条件自动化(Conditional Automation)
在有限情况下实现自动控制,比如在预设的路段(如高速和人流较少的城市路段),汽车自动驾驶可以完全负责整个车辆的操控,但是当遇到紧急情况,驾驶员仍需要在某些时候接管汽车,但有足够的预警时间,如即将进入修路的路段(Road work ahead)。Level 3 将解放驾驶员,即对行车安全不再负责,不必监视道路状况。
Level 4:高度自动化(High Automation)
自动驾驶在特定的道路条件下可以高度自动化,比如封闭的园区、高速公路、城市道路或固定的行车线路等,这这些受限的条件下,人类驾驶员可以全程不用干预。
Level 5:完全自动化(Full Automation)
对行车环境不加限制,可以自动地应对各种复杂的交通状况和道路环境等,在无须人协助的情况下由出发地驶向目的地,仅需起点和终点信息,汽车将全程负责行车安全,并完全不依赖驾驶员干涉,且不受特定道路的限制。
注释:DDT(Dynamic driving task):动态驾驶任务,指汽车在道路上行驶所需的所有实时操作和策略上的功能,不包括行程安排、目的地和途径地的选择等战略上的功能。
无人驾驶系统的核心可以概述为三个部分:感知(Perception),规划(Planning)和控制(Control),这些部分的交互以及其与车辆硬件、其他车辆的交互可以用下图表示:
感知是指无人驾驶系统从环境中收集信息并从中提取相关知识的能力。其中,环境感知(Environmental Perception)特指对于环境的场景理解能力,例如障碍物的位置,道路标志/标记的检测,行人车辆的检测等数据的语义分类。 一般来说,定位(Localization)也是感知的一部分,定位是无人车确定其相对于环境的位置的能力。
为了确保无人车对环境的理解和把握,无人驾驶系统的环境感知部分通常需要获取周围环境的大量信息,具体来说包括:障碍物的位置,速度以及可能的行为,可行驶的区域,交通规则等等。无人车通常是通过融合激光雷达(Lidar),相机(Camera),毫米波雷达(Millimeter We Radar)等多种传感器的数据来获取这些信息。
车载雷达传感器功能及优缺点各有不同,相关比较如下表所示:
激光雷达 是一类使用激光进行探测和测距的设备,它能够每秒钟向环境发送数百万光脉冲,它的内部是一种旋转的结构,这使得激光雷达能够实时的建立起周围环境的3维地图。
通常来说,激光雷达以10Hz左右的速度对周围环境进行旋转扫描,其扫描一次的结果为密集的点构成的3维图,每个点具备(x,y,z)信息,这个图被称为点云图(Point Cloud Graph),如下图所示,是使用Velodyne VLP-32c激光雷达建立的一个点云地图:
激光雷达因其可靠性目前仍是无人驾驶系统中最重要的传感器,然而,在现实使用中,激光雷达并不是完美的,往往存在点云过于稀疏,甚至丢失部分点的问题,对于不规则的物体表面,使用激光雷达很难辨别其模式,另一个比较大的挑战是一个比较大的挑战是激光雷达感知范围比较近,感知范围平均在 150m 左右,这取决于环境和障碍物的不同。激光雷达在角分辨度上也远远不及照相机。激光雷达对环境的敏感度也是比较大的,例如雨天中,车辆行驶中溅起来的水花,在激光雷达上都是有噪点的。
毫米波雷达 通过发射电磁波并通过检测回波来探测目标的有无、距离、速度和方位。由于毫米波雷达技术相对成熟,成本较低,并且在不良天气下表现良好,因此成为感知设备中重要的一环。但由于其分辨率较低,因此不能作为激光雷达的替代品,而是激光雷达的重要补充设备。
摄像机 根据镜头和布置方式的不同主要有以下四种:单目摄像机、双目摄像机、三目摄像机和环视摄像机。
单目摄像机 模组只包含一个摄像机和一个镜头。由于很多图像算法的研究都是基于单目摄像机开发的,因此相对于其他类别的摄像机,单目摄像机的算法成熟度更高。但是单目有着两个先天的缺陷。一是它的视野完全取决于镜头。焦距短的镜头,视野广,但缺失远处的信息。反之亦然。因此单目摄像机一般选用适中焦距的镜头。二是单目测距的精度较低。摄像机的成像图是图,即越远的物体成像越小。近处的物体,需要用几百甚至上千个像素点描述;而处于远处的同一物体,可能只需要几个像素点即可描述出来。这种特性会导致,越远的地方,一个像素点代表的距离越大,因此对单目来说物体越远,测距的精度越低。
双目摄像机 由于单目测距存在缺陷,双目摄像机应运而生。相近的两个摄像机拍摄物体时,会得到同一物体在摄像机的成像平面的像素偏移量。有了像素偏移量、相机焦距和两个摄像机的实际距离这些信息,根据数学换算即可得到物体的距离。虽然双目能得到较高精度的测距结果和提供图像分割的能力,但是它与单目一样,镜头的视野完全依赖于镜头。而且双目测距原理对两个镜头的安装位置和距离要求较多,这就会给相机的标定带来麻烦。
三目摄像机 由于单目和双目都存在某些缺陷,因此广泛应用于无人驾驶的摄像机方案为三目摄像机。三目摄像机其实就是三个不同焦距单目摄像机的组合。根据焦距不同,每个摄像机所感知的范围也不尽相同。对摄像机来说,感知的范围要么损失视野,要么损失距离。三目摄像机能较好地弥补感知范围的问题。因此在业界被广泛应用。正是由于三目摄像机每个相机的视野不同,因此近处的测距交给宽视野摄像头,中距离的测距交给主视野摄像头,更远的测距交给窄视野摄像头。这样一来每个摄像机都能发挥其最大优势。三目的缺点是需要同时标定三个摄像机,因而工作量更大。其次软件部分需要关联三个摄像机的数据,对算法要求也很高。
环视摄像机, 之前提到的三款摄像机它们所用的镜头都是非鱼眼的,环视摄像机的镜头是鱼眼镜头,而且安装位置是朝向地面的。某些高配车型上会有“360°全景显示”功能,所用到的就是环视摄像机。安装于车辆前方、车辆左右后视镜下和车辆后方的四个鱼眼镜头集图像,鱼眼摄像机为了获取足够大的视野,代价是图像的畸变严重。环视摄像机的感知范围并不大,主要用于车身5~10米内的障碍物检测、自主泊车时的库位线识别等。
为了理解点云信息,通常来说,我们对点云数据进行两步操作:分割(Segmentation)和分类(Classification)。其中,分割是为了将点云图中离散的点聚类成若干个整体,而分类则是区分出这些整体属于哪一个类别(比如说行人,车辆以及障碍物)。分割算法可以被分类如下几类:
在完成了点云的目标分割以后,分割出来的目标需要被正确的分类,在这个环节,一般使用机器学习中的分类算法,如支持向量机(Support Vector Machine,SVM)对聚类的特征进行分类,最近几年由于深度学习的发展,业界开始使用特别设计的卷积神经网络(Convolutional Neural Network,CNN)对三维的点云聚类进行分类。
实践中不论是提取特征-SVM的方法还是原始点云-CNN的方法,由于激光雷达点云本身解析度低的原因,对于反射点稀疏的目标(比如说行人),基于点云的分类并不可靠,所以在实践中,我们往往融合雷达和相机传感器,利用相机的高分辨率来对目标进行分类,利用Lidar的可靠性对障碍物检测和测距,融合两者的优点完成环境感知。
无人驾驶系统中,我们通常使用图像视觉来完成道路的检测和道路上目标的检测。道路的检测包含对道路线的检测(Lane Detection),可行驶区域的检测(Drivable Area Detection);道路上路标的检测包含对其他车辆的检测(Vehicle Detection),行人检测(Pedestrian Detection),交通标志和信号的检测(Traffic Sign Detection)等所有交通参与者的检测和分类。
车道线的检测涉及两个方面: 第一是识别出车道线,对于弯曲的车道线,能够计算出其曲率,第二是确定车辆自身相对于车道线的偏移(即无人车自身在车道线的哪个位置) 。一种方法是抽取一些车道的特征,包括边缘特征(通常是求梯度,如索贝尔算子),车道线的颜色特征等,使用多项式拟合我们认为可能是车道线的像素,然后基于多项式以及当前相机在车上挂载的位置确定前方车道线的曲率和车辆相对于车道的偏离。
可行驶区域的检测目前的一种做法是用深度神经网络直接对场景进行分割,即通过训练一个逐像素分类的深度神经网络,完成对图像中可行驶区域的切割。
交通参与者的检测和分类目前主要依赖于深度学习模型,常用的模型包括两类:
传感器层将数据以一帧帧、固定频率发送给下游,但下游是无法拿每帧的数据去进行决策或者融合的。因为传感器的状态不是100%有效的,如果仅根据某一帧的信号去判定前方是否有障碍物(有可能是传感器误检了),对下游决策来说是极不负责任的。因此上游需要对信息做预处理,以保证车辆前方的障得物在时间维度上是一直存在的, 而不是一闪而过。
这里就会使用到智能驾驶领域经常使用到的一个算法 卡尔曼滤波。
卡尔曼滤波(Kalman filter) 是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波会根据各测量量在不同时间下的值,考虑各时间下的联合分布,再产生对未知变数的估计,因此会比只以单一测量量为基础的估计方式要准。
卡尔曼滤波在技术领域有许多的应用。常见的有飞机及太空船的导引、导航及控制。卡尔曼滤波也广为使用在时间序列的分析中,例如信号处理及计量经济学中。卡尔曼滤波也是机器人运动规划及控制的重要主题之一,有时也包括在轨迹最佳化。卡尔曼滤波也用在中轴神经系统运动控制的建模中。因为从给与运动命令到收到感觉神经的回授之间有时间差,使用卡尔曼滤波有助于建立符合实际的系统,估计运动系统的目前状态,并且更新命令。
信息融合是指把相同属性的信息进行多合一操作。
比如摄像机检测到了车辆正前方有一个障碍物,毫米波也检测到车辆前方有一个障碍物,激光雷达也检测到前方有一个障碍物,而实际上前方只有一个障碍物,所以我们要做的是把多传感器下这辆车的信息进行一次融合,以此告诉下游,前面有辆车,而不是三辆车。
坐标转换在自动驾驶领域十分重要。
传感器是安装在不同地方的比如超声波雷达(如当车辆右方有一个障碍物,距离这个超声波雷达有3米,那么我们就认为这个障碍物距离车有3米吗?并不一定,因为决策控制层做车辆运动规划时,是在车体坐标系下做的(车体坐标系-般以后轴中心为O点)所以最终所有传感器的信息,都是需要转移到自车坐标系下的。因此感知层拿到3m的障碍物位置信息后,必须将该章碍物的位置信息转移到自车坐标系下,才能供规划决策使用。 同理,摄像机一般安装在挡风玻璃下面,拿到的数据也是基于摄像机坐标系的,给下游的数据,同样需要转换到自车坐标系下。
在无人车感知层面,定位的重要性不言而喻,无人车需要知道自己相对于环境的一个确切位置,这里的定位不能存在超过10cm的误差,试想一下,如果我们的无人车定位误差在30厘米,那么这将是一辆非常危险的无人车(无论是对行人还是乘客而言),因为无人驾驶的规划和执行层并不知道它存在30厘米的误差,它们仍然按照定位精准的前提来做出决策和控制,那么对某些情况作出的决策就是错的,从而造成事故。由此可见,无人车需要高精度的定位。
目前使用最广泛的无人车定位方法当属融合 全球定位系统(Global Positioning System,GPS)和惯性导航系统(Inertial Nigation System)定位方法 ,其中,GPS的定位精度在数十米到厘米级别之间,高精度的GPS传感器价格也就相对昂贵。融合GPS/IMU的定位方法在GPS信号缺失,微弱的情况下无法做到高精度定位,如地下停车场,周围均为高楼的市区等,因此只能适用于部分场景的无人驾驶任务。
地图类定位算法是另一类广泛使用的无人车定位算法, 同步定位与地图构建(Simultaneous Localization And Ming,SLAM) 是这类算法的代表,SLAM的目标即构建地图的同时使用该地图进行定位,SLAM通过利用已经观测到的环境特征确定当前车辆的位置以及当前观测特征的位置。这是一个利用以往的先验和当前的观测来估计当前位置的过程,实践上我们通常使用贝叶斯滤波器(Bayesian filter)来完成,具体来说包括卡尔曼滤波(Kalman Filter),扩展卡尔曼滤波(Extended Kalman Filter)以及粒子滤波(Particle Filter)。SLAM虽然是机器人定位领域的研究热点,但是在实际无人车开发过程中使用SLAM定位却存在问题,不同于机器人,无人车的运动是长距离的,大开放环境的。在长距离的运动中,随着距离的增大,SLAM定位的偏差也会逐渐增大,从而造成定位失败。
在实践中,一种有效的无人车定位方法是改变原来SLAM中的扫描匹配类算法,具体来说,我们不再在定位的同时制图,而是事先使用传感器如激光雷达对区域构建点云地图,通过程序和人工的处理将一部分“语义”添加到地图中(例如车道线的具体标注,路网,红绿灯的位置,当前路段的交通规则等等),这个包含了语义的地图就是我们无人驾驶车的 高精度地图(HD Map) 。实际定位的时候,使用当前激光雷达的扫描和事先构建的高精度地图进行点云匹配,确定我们的无人车在地图中的具体位置,这类方法被统称为扫描匹配方法(Scan Matching),扫描匹配方法最常见的是迭代最近点法(Iterative Closest Point ,ICP),该方法基于当前扫描和目标扫描的距离度量来完成点云配准。
除此以外, 正态分布变换(Normal Distributions Transform,NDT) 也是进行点云配准的常用方法,它基于点云特征直方图来实现配准。基于点云配准的定位方法也能实现10厘米以内的定位精度。虽然点云配准能够给出无人车相对于地图的全局定位,但是这类方法过于依赖事先构建的高精度地图,并且在开放的路段下仍然需要配合GPS定位使用,在场景相对单一的路段(如高速公路),使用GPS加点云匹配的方法相对来说成本过高。
拓展阅读: L4 自动驾驶中感知系统遇到的挑战及解决方案
浅析自动驾驶的重要一环:感知系统发展现状与方向
无人车的规划模块分为三层设计:任务规划,行为规划和动作规划,其中,任务规划通常也被称为路径规划或者路由规划(Route Planning),其负责相对顶层的路径规划,例如起点到终点的路径选择。 我们可以把我们当前的道路系统处理成有向网络图(Directed Graph Network),这个有向网络图能够表示道路和道路之间的连接情况,通行规则,道路的路宽等各种信息,其本质上就是我们前面的定位小节中提到的高精度地图的“语义”部分,这个有向网络图被称为路网图(Route Network Graph),如下图所示:
这样的路网图中的每一个有向边都是带权重的,那么,无人车的路径规划问题,就变成了在路网图中,为了让车辆达到某个目标(通常来说是从A地到B地),基于某种方法选取最优(即损失最小)的路径的过程,那么问题就变成了一个有向图搜索问题,传统的算法如迪科斯彻算法(Dijkstra’s Algorithm)和A 算法(A Algorithm)主要用于计算离散图的最优路径搜索,被用于搜索路网图中损失最小的路径。
行为规划有时也被称为决策制定(Decision Maker),主要的任务是按照任务规划的目标和当前的局部情况(其他的车辆和行人的位置和行为,当前的交通规则等),作出下一步无人车应该执行的决策,可以把这一层理解为车辆的副驾驶,他依据目标和当前的交通情况指挥驾驶员是跟车还是超车,是停车等行人通过还是绕过行人等等。
行为规划的一种方法是使用包含大量动作短语的复杂有限状态机(Finite State Machine,FSM)来实现,有限状态机从一个基础状态出发,将根据不同的驾驶场景跳转到不同的动作状态,将动作短语传递给下层的动作规划层,下图是一个简单的有限状态机:
如上图所示,每个状态都是对车辆动作的决策,状态和状态之间存在一定的跳转条件,某些状态可以自循环(比如上图中的循迹状态和等待状态)。虽然是目前无人车上用的主流行为决策方法,有限状态机仍然存在着很大的局限性:首先,要实现复杂的行为决策,需要人工设计大量的状态;车辆有可能陷入有限状态机没有考虑过的状态;如果有限状态机没有设计死锁保护,车辆甚至可能陷入某种死锁。
通过规划一系列的动作以达到某种目的(比如说规避障碍物)的处理过程被称为动作规划。通常来说,考量动作规划算法的性能通常使用两个指标:计算效率(Computational Efficiency)和完整性(Completeness),所谓计算效率,即完成一次动作规划的处理效率,动作规划算法的计算效率在很大程度上取决于配置空间(Configuration Space),如果一个动作规划算法能够在问题有解的情况下在有限时间内返回一个解,并且能够在无解的情况下返回无解,那么我们称该动作规划算法是完整的。
配置空间:一个定义了机器人所有可能配置的集合,它定义了机器人所能够运动的维度,最简单的二维离散问题,那么配置空间就是[x, y],无人车的配置空间可以非常复杂,这取决于所使用的运动规划算法。
在引入了配置空间的概念以后,那么无人车的动作规划就变成了:在给定一个初始配置(Start Configuration),一个目标配置(Goal Configuration)以及若干的约束条件(Constraint)的情况下,在配置空间中找出一系列的动作到达目标配置,这些动作的执行结果就是将无人车从初始配置转移至目标配置,同时满足约束条件。在无人车这个应用场景中,初始配置通常是无人车的当前状态(当前的位置,速度和角速度等),目标配置则来源于动作规划的上一层——行为规划层,而约束条件则是车辆的运动限制(最大转角幅度,最大加速度等)。显然,在高维度的配置空间来动作规划的计算量是非常巨大的,为了确保规划算法的完整性,我们不得不搜索几乎所有的可能路径,这就形成了连续动作规划中的“维度灾难”问题。目前动作规划中解决该问题的核心理念是将连续空间模型转换成离散模型,具体的方法可以归纳为两类:组合规划方法(Combinatorial Planning)和基于样的规划方法(Sampling-Based Planning)。
运动规划的组合方法通过连续的配置空间找到路径,而无需借助近似值。由于这个属性,它们可以被称为精确算法。组合方法通过对规划问题建立离散表示来找到完整的解,如在Darpa城市挑战赛(Darpa Urban Challenge)中,CMU的无人车BOSS所使用的动作规划算法,他们首先使用路径规划器生成备选的路径和目标点(这些路径和目标点事融合动力学可达的),然后通过优化算法选择最优的路径。另一种离散化的方法是网格分解方法(Grid Decomposition Approaches),在将配置空间网格化以后我们通常能够使用离散图搜索算法(如A*)找到一条优化路径。
基于样的方法由于其概率完整性而被广泛使用,最常见的算法如PRM(Probabilistic Roadmaps),RRT(Rapidly-Exploring Random Tree),FMT(Fast-Marching Trees),在无人车的应用中,状态样方法需要考虑两个状态的控制约束,同时还需要一个能够有效地查询样状态和父状态是否可达的方法。
自动驾驶汽车的车辆控制技术旨在环境感知技术的基础之上,根据决策规划出目标轨迹,通过纵向和横向控制系统的配合使汽车能够按照跟踪目标轨迹准确稳定行驶,同时使汽车在行驶过程中能够实现车速调节、车距保持、换道、超车等基本操作。
互联网科技公司主要做软件,以工程机上层为主;而车厂其实以下层的组装为主,也就是OEM,也不是那么懂车。像制动、油门和转向等这些领域,话语权依然集中在博世、大陆这样的Tier 1身上。
自动驾驶控制的核心技术是车辆的纵向控制和横向控制技术。纵向控制,即车辆的驱动与制动控制;横向控制,即方向盘角度的调整以及轮胎力的控制。实现了纵向和横向自动控制,就可以按给定目标和约束自动控制车运行。所以,从车本身来说,自动驾驶就是综合纵向和横向控制。
车辆纵向控制是在行车速度方向上的控制,即车速以及本车与前后车或障碍物距离的自动控制。巡航控制和紧急制动控制都是典型的自动驾驶纵向控制案例。这类控制问题可归结为对电机驱动、发动机、传动和制动系统的控制。各种电机-发动机-传动模型、汽车运行模型和刹车过程模型与不同的控制器算法结合,构成了各种各样的纵向控制模式,典型结构如图所示。
此外,针对轮胎作用力的 滑移率控制 是纵向稳定控制中的关键部分。滑移率控制系统通过控制车轮滑移率调节车辆的纵向动力学特性来防止车辆发生过度驱动滑移或者制动抱死,从而提高车辆的稳定性和操纵性能。制动防抱死系统(antilock brake system)简称 ABS,在汽车制动时,自动控制制动器制动力的大小,使车轮不被抱死,处于边滚边滑(滑移率在 20%左右)的状态,以保证地面能够给车轮提供最大的制动作用力值。一些智能滑移率控制策略利用充足的环境感知信息设计了随道路环境变化的车轮最有滑移率调节器,从而提升轮胎力作用效果。
智能控制策略,如模糊控制、神经网络控制、滚动时域优化控制等,在纵向控制中也得到广泛研究和应用,并取得了较好的效果,被认为是最有效的方法。
而传统控制的方法, 如PID控制和前馈开环控制 ,一般是建立发动机和汽车运动过程的近似线形模型,在此基础上设计控制器,这种方法实现的控制,由于对模型依赖性大及模型误差较大,所以精度差、适应性差。从目前的论文和研究的项目看,寻求简单而准确的电机-发动机-传动、刹车过程和汽车运动模型,以及对随机扰动有鲁棒性和对汽车本身性能变化有适应性的控制器仍是研究的主要内容。
车辆横向控制指垂直于运动方向上的控制,对于汽车也就是转向控制。目标是控制汽车自动保持期望的行车路线,并在不同的车速、载荷、风阻、路况下有很好的乘坐舒适性和稳定性。
车辆横向控制主要有两种基本设计方法,一种是基于驾驶员模拟的方法;另一种是给予汽车横向运动力学模型的控制方法。基于驾驶员模拟的方法,一种策略是使用较简单的运动力学模型和驾驶员操纵规则设计控制器;另一策略是用驾驶员操纵过程的数据训练控制器获取控制算法。基于运动力学模型的方法要建立较精确的汽车横向运动模型。典型模型是所谓单轨模型,或称为自行车模型,也就是认为汽车左右两侧特性相同。横向控制系统基本结构如下图。控制目标一般是车中心与路中心线间的偏移量,同时受舒适性等指标约束。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。